Environmental Chemistry Letters

, Volume 16, Issue 1, pp 43–58 | Cite as

Nanomaterials for agriculture, food and environment: applications, toxicity and regulation

  • Anubhav Kaphle
  • P. N. Navya
  • Akhela Umapathi
  • Hemant Kumar Daima


Nanotechnology is expected to have a beneficial influence on agriculture, food and environment, due to the unique properties of nanomaterials. However, little is known about their safety and potential toxicity. Here we review metal nanoparticles, nanometal oxides, carbon nanotubes, liposomes and dendrimers. We present the application of these nanomaterials in agriculture, food and environment for plant protection; disease treatment; packing materials; development of new tastes, textures and sensations; pathogen detection; and delivery systems. We discuss risk assessment of nanomaterials and toxicological impacts of nanomaterials on agriculture, food and environment. We then provide regulatory guidelines for the safer use of nanomaterials.


Nanotechnology Agriculture Food Nanotoxicity Environment Nanomaterials 


  1. Abbas KA, Saleh AM, Mohamed A, MohdAzhan N (2009) The recent advances in the nanotechnology and its applications in food processing: a review. J Food Agric Environ 7:14–17Google Scholar
  2. AbdElhady MM (2012) Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem. doi: 10.1155/2012/840591 Google Scholar
  3. Agashe HB, Dutta T, Garg M, Jain NK (2006) Investigations on the toxicological profile of functionalized fifth-generation poly(propylene imine) dendrimer. J Pharm Pharmacol 58:1491–1498CrossRefGoogle Scholar
  4. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefGoogle Scholar
  5. Alfadul SM, Elneshwy AA (2010) Use of nanotechnology in food processing, packaging and safety—review. Afr J Food Agric Nutr Dev. doi: 10.4314/ajfand.v10i6.58068 Google Scholar
  6. Alivov YI, Kalinina EV, Cherenkov AE, Look DC, Ataev BM, Omaev AK, Chukichev MV, Bagnall DM (2003) Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl Phys Lett 83:4719CrossRefGoogle Scholar
  7. An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci Technol 41:1100–1107CrossRefGoogle Scholar
  8. Asensio-Ramos M, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MA (2009) Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental and forestal soils. Anal Chim Acta 647:167–176CrossRefGoogle Scholar
  9. Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959. doi: 10.1021/cr900327d CrossRefGoogle Scholar
  10. Bang SH, Yu YM, Hwang IC, Park HJ (2009) Formation of size-controlled nano carrier systems by self-assembly. J Microencapsul 26:722–733CrossRefGoogle Scholar
  11. Banville C, Vuillemard JC, Lacroix C (2000) Comparison of different methods for fortifying Cheddar cheese with vitamin D. Int Dairy J 10:375–382CrossRefGoogle Scholar
  12. Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204CrossRefGoogle Scholar
  13. Becheri A, Dürr M, Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689CrossRefGoogle Scholar
  14. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222CrossRefGoogle Scholar
  15. Benech R-O, Kheadr EE, Lacroix C, Fliss I (2002) Antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed culture during cheddar cheese ripening. Appl Environ Microbiol 68:5607–5619CrossRefGoogle Scholar
  16. Calestani D, Zha M, Mosca R, Zappettini A, Carotta MC, Di Natale V, Zanotti L (2010) Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens Actuators B Chem 144:472–478CrossRefGoogle Scholar
  17. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619CrossRefGoogle Scholar
  18. Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411–1420CrossRefGoogle Scholar
  19. Chau C-F, Shiuan-Huei W, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280. doi: 10.1016/j.tifs.2007.01.007 CrossRefGoogle Scholar
  20. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008a) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A 25:241–258. doi: 10.1080/02652030701744538 CrossRefGoogle Scholar
  21. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008b) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258CrossRefGoogle Scholar
  22. Chen LQ, Fang L, Ling J, Ding CZ, Kang B, Huang CZ (2015) Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol 28:501–509CrossRefGoogle Scholar
  23. Chorianopoulos NG, Tsoukleris DS, Panagou EZ, Falaras P, Nychas G-JE (2011) Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol 28:164–170CrossRefGoogle Scholar
  24. Chrimes AF, Khoshmanesh K, Stoddart PR, Kayani AA, Mitchell A, Daima H, Bansal V, Kalantar-zadeh K (2012) Active control of silver nanoparticles spacing using dielectrophoresis for SERS. Anal Chem. doi: 10.1021/ac203381n Google Scholar
  25. Chung C-J, Lin H-I, Tsou H-K, Shi Z-Y, He J-L (2008) An antimicrobial TiO2 coating for reducing hospital-acquired infection. J Biomed Mater Res B Appl Biomater 85:220–224CrossRefGoogle Scholar
  26. Daima HK (2013) Towards fine-tuning the surface corona of inorganic and organic nanomaterials to control their properties at nano-bio interface. PhD thesis, School of Applied Sciences RMITGoogle Scholar
  27. Daima HK, Bansal V (2015) Chapter 10—Influence of physicochemical properties of nanomaterials on their antibacterial applications. In: Rai M, Kon K (eds) Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases. Academic Press, Boston, pp 151–166CrossRefGoogle Scholar
  28. Daima HK, Navya PN (2016) Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence 3:1–14CrossRefGoogle Scholar
  29. Daima HK, Selvakannan P, Homan Z, Bhargava SK, Bansal V (2011) Tyrosine mediated gold, silver and their alloy nanoparticles synthesis: antibacterial activity toward gram positive and gram negative bacterial strains. In: Tyrosine mediated gold, silver and their alloy nanoparticles synthesis: antibacterial activity toward gram positive and gram negative bacterial strains, 2011 international conference on nanoscience, technology and societal implications, NSTSI11Google Scholar
  30. Daima HK, Selvakannan PR, Shukla R, Bhargava SK, Bansal V (2013) Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS ONE 8:1–14CrossRefGoogle Scholar
  31. Daima HK, Selvakannan PR, Kandjani AE, Shukla R, Bhargava SK, Bansal V (2014a) Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6:758–765. doi: 10.1039/C3NR03806H CrossRefGoogle Scholar
  32. Daima HK, Selvakannan PR, Bhargava SK, Shastry SK, Bansal V (2014b) Amino acids-conjugated gold, silver and their alloy nanoparticles: role of surface chemistry and metal composition on peroxidase like activity. In: Technical proceedings of Nanotech 2014 TechConnect world conference and Expo, pp 275–278, NSTI, Washington, USAGoogle Scholar
  33. Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400CrossRefGoogle Scholar
  34. Dasgupta N, Ranjan S, Rajendran B, Manickam V, Ramalingam C, Avadhani GS, Kumar A (2016) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23:4149–4163CrossRefGoogle Scholar
  35. Day W (2005) Engineering precision into variable biological systems. Ann Appl Biol 146:155–162. doi: 10.1111/j.1744-7348.2005.040064.x CrossRefGoogle Scholar
  36. de Brabander-van den Berg E, Meijer EW (1993) Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl 32:1308–1311CrossRefGoogle Scholar
  37. De Volder MFL, Tawfick SH, Baughman RH, John Hart A (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRefGoogle Scholar
  38. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91CrossRefGoogle Scholar
  39. Ditta IB, Steele A, Liptrot C, Tobin J, Tyler H, Yates HM, Sheel DW, Foster HA (2008) Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2/CuO dual layers on Escherichia coli and bacteriophage T4. Appl Microbiol Biotechnol 79:127–133CrossRefGoogle Scholar
  40. Du J, Wang S, You H, Zhao X (2013) Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Environ Toxicol Pharmacol 36:451–462CrossRefGoogle Scholar
  41. Dubey K, Anand BG, Badhwar R, Bagler G, Navya PN, Daima HK, Kar K (2015) Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids. doi: 10.1007/s00726-015-2046-6 Google Scholar
  42. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24CrossRefGoogle Scholar
  43. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834CrossRefGoogle Scholar
  44. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2010) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287CrossRefGoogle Scholar
  45. Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459. doi: 10.1016/j.addr.2006.09.011 CrossRefGoogle Scholar
  46. Fernández A, Picouet P, Lloret E (2010) Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol 142:222–228CrossRefGoogle Scholar
  47. Fernández-Baldo MA, Messina GA, Sanz MI, Raba J (2009) Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues. Talanta 79:681–686CrossRefGoogle Scholar
  48. Fernández-García M, Rodriguez JA (2011) Metal oxide nanoparticles. Encycl Inorg Bioinorg Chem. doi: 10.1002/9781119951438.eibc0331
  49. Fischer HC, Chan Warren C W (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571CrossRefGoogle Scholar
  50. Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C sub 60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117:703CrossRefGoogle Scholar
  51. Fraczek A, Menaszek E, Paluszkiewicz C, Blazewicz M (2008) Comparative in vivo biocompatibility study of single-and multi-wall carbon nanotubes. Acta Biomater 4:1593–1602CrossRefGoogle Scholar
  52. Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898CrossRefGoogle Scholar
  53. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386CrossRefGoogle Scholar
  54. Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles. Occup Med 56:307–311. doi: 10.1093/occmed/kql052 CrossRefGoogle Scholar
  55. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315CrossRefGoogle Scholar
  56. Gokhale PC, Zhang C, Newsome JT, Pei J, Ahmad I, Rahman A, Dritschilo A, Kasid UN (2002) Pharmacokinetics, toxicity, and efficacy of ends-modified raf antisense oligodeoxyribonucleotide encapsulated in a novel cationic liposome. Clin Cancer Res 8:3611–3621Google Scholar
  57. Gonzalo S, Rodea-Palomares I, Leganés F, García-Calvo E, Rosal R, Fernández-Piñas F (2015) First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: a linkage with toxicity and oxidative stress. Nanotoxicology 9:706–718CrossRefGoogle Scholar
  58. Gottesman R, Shukla S, Perkas N, Solovyov LA, Nitzan Y, Gedanken A (2010) Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27:720–726CrossRefGoogle Scholar
  59. Grinstaff MW (2002) Biodendrimers: new polymeric biomaterials for tissue engineering. Chemistry Eur J 8:2838–2846CrossRefGoogle Scholar
  60. Hall S, Bradley T, Moore JT, Kuykindall T, Minella L (2009) Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3:91–97CrossRefGoogle Scholar
  61. Han G, Ghosh P, De M, Rotello VM (2007) Drug and gene delivery using gold nanoparticles. NanoBiotechnology 3:40–45CrossRefGoogle Scholar
  62. Hatzigrigoriou NB, Papaspyrides CD (2011) Nanotechnology in plastic food-contact materials. J Appl Polym Sci 122:3719–3738CrossRefGoogle Scholar
  63. Hawker CJ, Frechet JM (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647CrossRefGoogle Scholar
  64. Hayes RT, Owen DJ, Chauhan AS, Pulgam VR (2011) PEHAM dendrimers for use in agriculture. In: PEHAM dendrimers for use in agriculture. Google PatentsGoogle Scholar
  65. Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77:338–346CrossRefGoogle Scholar
  66. Holl MMB (2009) Nanotoxicology: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:353–359. doi: 10.1002/wnan.27 CrossRefGoogle Scholar
  67. Hsieh Y-F, Chen T-L, Wang Y-T, Chang J-H, Chang H-M (2002) Properties of liposomes prepared with various lipids. J Food Sci 67:2808–2813CrossRefGoogle Scholar
  68. Hu M, Chen J, Li Z-Y, Leslie A, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094CrossRefGoogle Scholar
  69. Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591CrossRefGoogle Scholar
  70. Hussain S, Plückthun A, Allen TM, Zangemeister-Wittke U (2007) Antitumor activity of an epithelial cell adhesion molecule-targeted nanovesicular drug delivery system. Mol Cancer Ther 6:3019–3027CrossRefGoogle Scholar
  71. Ihre H, Hult A, Söderlind E (1996) Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2, 2-bis (hydroxymethyl) propionic acid and 1,1,1-tris(hydroxyphenyl)ethane. J Am Chem Soc 118:6388–6395CrossRefGoogle Scholar
  72. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  73. Jain D, Kumar Daima H, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig J Nanomater Biostruct 4:557–563Google Scholar
  74. Jain A, Ranjan S, Dasgupta N, Ramalingam C (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2016.1160363 Google Scholar
  75. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’emanuele A (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252:263–266CrossRefGoogle Scholar
  76. Jian F, Zhang Y, Wang J, Ba K, Mao R, Lai W, Lin Y (2012) Toxicity of biodegradable nanoscale preparations. Curr Drug Metab 13:440–446CrossRefGoogle Scholar
  77. Jiang L, Yao M, Liu B, Li Q, Liu R, Lv H, Shuangchen L, Gong C, Zou B, Cui T (2012) Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties. J Phys Chem C 116:11741–11745CrossRefGoogle Scholar
  78. Kahru A, Dubourguier H-C, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153–5170CrossRefGoogle Scholar
  79. Kalpana Sastry R, Rashmi HB, Rao NH (2011) Nanotechnology for enhancing food security in India. Food Policy 36:391–400. doi: 10.1016/j.foodpol.2010.10.012 CrossRefGoogle Scholar
  80. Kaphle A, Navya PN, Umapathi A, Chopra M, Daima HK (2017a) Nanomaterial impact, toxicity and regulation in agriculture, food and environment. In: Dasgupta N, Ranjan S, Lichtfouse E (eds) Nanoscience in food and agriculture 5. Springer, Berlin, pp 205–242CrossRefGoogle Scholar
  81. Kaphle A, Navya PN, Umapathi A, Chopra M, Daima HK (2017b) Nanomaterial impact, toxicity and regulation in agriculture, food and environment nanomaterial impact, toxicity and regulation in agriculture, food and environment. Nanoscience in food and agriculture 5. Springer, Berlin, pp 205–242CrossRefGoogle Scholar
  82. Kašpar J, Fornasiero P, Graziani M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50:285–298CrossRefGoogle Scholar
  83. Khan SB, Faisal M, Rahman MM, Jamal A (2011) Exploration of CeO 2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Total Environ 409:2987–2992CrossRefGoogle Scholar
  84. Khodakovskaya M, Dervishi E, Mahmood M, Yang X, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227CrossRefGoogle Scholar
  85. Kirby CJ, Whittle CJ, Rigby N, Coxon DT, Law BA (1991) Stabilization of ascorbic acid by microencapsulation in liposomes. Int J Food Sci Technol 26:437–449CrossRefGoogle Scholar
  86. Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77:2381–2385CrossRefGoogle Scholar
  87. Kong H, Jang J (2008) Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051–2056CrossRefGoogle Scholar
  88. Kostarelos K, Lacerda L, Pastorin G, Wei W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand J-P, Muller S (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108–113CrossRefGoogle Scholar
  89. Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50:1260–1278. doi: 10.1002/anie.201001037 CrossRefGoogle Scholar
  90. Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, Albar JP, Barbas C, Martins dos Santos VAP, dos Fernández-García M (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep. doi: 10.1038/srep04134 Google Scholar
  91. Kuzma J (2007) Moving forward responsibly: oversight for the nanotechnology-biology interface. In: Maynard AD, Pui DYH (eds) Nanotechnology and occupational health. Springer, DordrechtGoogle Scholar
  92. Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225CrossRefGoogle Scholar
  93. Lee CC, MacKay JA, Fréchet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526CrossRefGoogle Scholar
  94. Levard C, Matt Hotze E, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914CrossRefGoogle Scholar
  95. Li Y, Tseng YD, Kwon SY, Leo d’Espaux J, Bunch S, McEuen PL, Luo D (2004) Controlled assembly of dendrimer-like DNA. Nat Mater 3:38–42CrossRefGoogle Scholar
  96. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi: 10.1016/j.envpol.2007.01.016 CrossRefGoogle Scholar
  97. Lotem M, Hubert A, Lyass O, Goldenhersh MA, Ingber A, Peretz T, Gabizon A (2000) Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Arch Dermatol 136:1475–1480CrossRefGoogle Scholar
  98. Lu C, Chiu H (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145CrossRefGoogle Scholar
  99. Luo Z, Zheng K, Xie J (2014) Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem Commun 50:5143–5155CrossRefGoogle Scholar
  100. Lyass O, Uziely B, Ben-Yosef R, Tzemach D, Heshing NI, Lotem M, Brufman G, Gabizon A (2000) Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 89:1037–1047CrossRefGoogle Scholar
  101. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85CrossRefGoogle Scholar
  102. Maddinedi B, Sireesh BK, Mandal SR, Dasgupta N (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733CrossRefGoogle Scholar
  103. Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432CrossRefGoogle Scholar
  104. Maynard AD, Warheit DB, Philbert MA (2010) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci. doi: 10.1093/toxsci/kfq372 Google Scholar
  105. Maysinger D (2007) Nanoparticles and cells: good companions and doomed partnerships. Org Biomol Chem 5:2335–2342CrossRefGoogle Scholar
  106. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062CrossRefGoogle Scholar
  107. Melaine F, Roupioz Y, Buhot A (2015) Gold nanoparticles surface plasmon resonance enhanced signal for the detection of small molecules on split-aptamer microarrays (small molecules detection from split-aptamers). Microarrays 4:41–52CrossRefGoogle Scholar
  108. Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998CrossRefGoogle Scholar
  109. Miller DD (2010) Food nanotechnology: new leverage against iron deficiency. Nat Nanotechnol 5:318–319CrossRefGoogle Scholar
  110. Mirkin CA, Niemeyer CM (2007) Nanobiotechnology II: more concepts and applications. Wiley, WeinheimCrossRefGoogle Scholar
  111. Moghimi SM, Christy Hunter A, Clifford Murray J (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330. doi: 10.1096/fj.04-2747rev CrossRefGoogle Scholar
  112. Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252CrossRefGoogle Scholar
  113. Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528CrossRefGoogle Scholar
  114. Monnappa S, Firdose N, Shree M, Nath K, Navya PN, Daima HK (2017) Influence of amino acid corona, metallic core and surface functionalization of nanoparticles on their in-vitro biological behaviour. Int J Nanotechnol 816–832 (in press) Google Scholar
  115. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730CrossRefGoogle Scholar
  116. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  117. Niemeyer CM, Mirkin CA (2004) Nanobiotechnology: concept, application and perspectives. Wiley, WeinheimCrossRefGoogle Scholar
  118. Oberdarster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25CrossRefGoogle Scholar
  119. Othman SH, Abd Salam NR, Zainal N, Basha RK, Talib RA (2014) Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int J Photoenergy. doi: 10.1155/2014/945930 Google Scholar
  120. Pare B, Jonnalagadda SB, Tomar H, Singh P, Bhagwat VW (2008) ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination 232:80–90CrossRefGoogle Scholar
  121. Pasupathy K, Lin S, Qian H, Luo H, Ke PC (2008) Direct plant gene delivery with a poly (amidoamine) dendrimer. Biotechnol J 3:1078–1082CrossRefGoogle Scholar
  122. Patil S, Kuiry SC, Seal S, Vanfleet R (2002) Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating. J Nanopart Res 4:433–438CrossRefGoogle Scholar
  123. Pearson A, Bhargava SK, Bansal V (2011a) UV-switchable polyoxometalate sandwiched between TiO2 and metal nanoparticles for enhanced visible and solar light photococatalysis. Langmuir 27:9245–9252CrossRefGoogle Scholar
  124. Pearson A, Jani H, Kalantar-Zadeh K, Bhargava SK, Bansal V (2011b) Gold nanoparticle-decorated Keggin ions/TiO2 photococatalyst for improved solar light photocatalysis. Langmuir 27:6661–6667CrossRefGoogle Scholar
  125. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1–11CrossRefGoogle Scholar
  126. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Controlled Release 149:65–71CrossRefGoogle Scholar
  127. Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRefGoogle Scholar
  128. Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC (2012) Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6:4279–4287. doi: 10.1021/nn3008383 CrossRefGoogle Scholar
  129. Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:1–23CrossRefGoogle Scholar
  130. Ranjan S, Dasgupta N, Rajendran B, Avadhani GS, Ramalingam C, Kumar A (2016) Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ Sci Pollut Res. doi: 10.1007/s11356-016-6440-8 Google Scholar
  131. Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51:723–730. doi: 10.1080/10408391003785417 CrossRefGoogle Scholar
  132. Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1:P72–P96. doi: 10.1080/19430871003684440 CrossRefGoogle Scholar
  133. Raynolds LT (2004) The globalization of organic agro-food networks. World Dev 32:725–743. doi: 10.1016/j.worlddev.2003.11.008 CrossRefGoogle Scholar
  134. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee W-Y, Varela-Ramirez A, Peralta-Videa JR (2013a) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118CrossRefGoogle Scholar
  135. Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee W-Y, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013b) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285CrossRefGoogle Scholar
  136. Rodriguez-Nogales JM (2004) Kinetic behaviour and stability of glucose oxidase entrapped in liposomes. J Chem Technol Biotechnol 79:72–78CrossRefGoogle Scholar
  137. Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol 90:195–229CrossRefGoogle Scholar
  138. Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387CrossRefGoogle Scholar
  139. Samuel JP, Samboju NC, Yau KY, Webb SR, Burroughs F (2014) Use of dendrimer nanotechnology for delivery of biomolecules into plant cells. In: Use of dendrimer nanotechnology for delivery of biomolecules into plant cells. Google PatentsGoogle Scholar
  140. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342CrossRefGoogle Scholar
  141. Saxena RK, Williams W, Mcgee JK, Daniels MJ, Boykin E, Ian Gilmour M (2007) Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single-wall carbon nanotubes. Nanotoxicology 1:291–300CrossRefGoogle Scholar
  142. Scott NR (2007) Nanoscience in veterinary medicine. Vet Res Commun 31:139–144CrossRefGoogle Scholar
  143. Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Agric Food 15:22–44Google Scholar
  144. Seabra AB, Rai M, Durán N (2014) Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: a mini review. J Plant Biochem Biotechnol 23:1–10CrossRefGoogle Scholar
  145. Seeger EM, Baun A, Kästner M, Trapp S (2009) Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J Soils Sediments 9:46–53CrossRefGoogle Scholar
  146. Senapati T, Senapati D, Singh AK, Fan Z, Kanchanapally R, Ray PC (2011) Highly selective SERS probe for Hg(II) detection using tryptophan-protected popcorn shaped gold nanoparticles. Chem Commun 47:10326–10328CrossRefGoogle Scholar
  147. Shankar S, Soni SK, Daima HK, Periasamy S, Khire JM, Bhargava SK, Bansal V (2015) Charge-switchable gold nanoparticles for enhanced enzymatic thermostability. Phys Chem Chem Phys. doi: 10.1039/C5CP03021H Google Scholar
  148. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRefGoogle Scholar
  149. Sharma VK (2013) Chapter 10—Stability and toxicity of silver nanoparticles in aquatic environment: A review. In: Sustainable nanotechnology and the environment: advances and achievements, ACS symposium series, vol 1124, pp 165–179. doi: 10.1021/bk-2013-1124.ch010
  150. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140CrossRefGoogle Scholar
  151. Sharma TK, Ramanathan R, Weerathunge P, Mohammadtaheri M, Daima HK, Shukla R, Bansal V (2014) Aptamer-mediated ‘turn-off/turn-on’nanozyme activity of gold nanoparticles for kanamycin detection. Chem Commun 50:15856–15859CrossRefGoogle Scholar
  152. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92Google Scholar
  153. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782CrossRefGoogle Scholar
  154. Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434CrossRefGoogle Scholar
  155. Song J, Zhou J, Wang ZL (2006) Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett 6:1656–1662CrossRefGoogle Scholar
  156. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95CrossRefGoogle Scholar
  157. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89CrossRefGoogle Scholar
  158. Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455CrossRefGoogle Scholar
  159. Suh WH, Suslick KS, Stucky GD, Suh Y-H (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170CrossRefGoogle Scholar
  160. Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B 69:164–168CrossRefGoogle Scholar
  161. Tankhiwale R, Bajpai SK (2012) Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf B 90:16–20CrossRefGoogle Scholar
  162. Taylor TM, Jochen Weiss P, Davidson M, Bruce BD (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:587–605CrossRefGoogle Scholar
  163. Teow Y, Asharani PV, Prakash Hande M, Valiyaveettil S (2011) Health impact and safety of engineered nanomaterials. Chem Commun 47:7025–7038CrossRefGoogle Scholar
  164. Thirumurugan A, Ramachandran S, Shiamala Gowri A (2013) Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria-an approach for food packaging material preparation. Int Food Res J 20:1909–1912Google Scholar
  165. Thorley AJ, Tetley TD (2013) New perspectives in nanomedicine. Pharmacol Ther 140:176–185. doi: 10.1016/j.pharmthera.2013.06.008 CrossRefGoogle Scholar
  166. Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29:138–175CrossRefGoogle Scholar
  167. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520CrossRefGoogle Scholar
  168. Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147CrossRefGoogle Scholar
  169. Turnbull WB, Stoddart JF (2002) Design and synthesis of glycodendrimers. Rev Mol Biotechnol 90:231–255CrossRefGoogle Scholar
  170. Unrine JM, Tsyusko OV, Hunyadi SE, Judy JD, Bertsch PM (2010) Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J Environ Qual 39:1942–1953CrossRefGoogle Scholar
  171. Vecchio G, Galeone A, Brunetti V, Maiorano G, Rizzello L, Sabella S, Cingolani R, Pompa PP (2012) Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomed Nanotechnol Biol Med 8:1–7CrossRefGoogle Scholar
  172. Velmurugan P, Lee S-M, Iydroose M, Lee K-J, Byung-Taek O (2013) Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl Microbiol Biotechnol 97:361–368CrossRefGoogle Scholar
  173. Wan Q, Li QH, Chen YJ, Ta-Hung Wang XL, He JL, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654–3656CrossRefGoogle Scholar
  174. Wang R-M, Wang B-Y, He Y-F, Lv W-H, Wang J-F (2010) Preparation of composited nano-TiO2 and its application on antimicrobial and self-cleaning coatings. Polym Adv Technol 21:331–336CrossRefGoogle Scholar
  175. Wang X, Liu X, Han H (2013) Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf B 103:136–142CrossRefGoogle Scholar
  176. Wilschut J, Hoekstra D (1986) Membrane fusion: lipid vesicles as a model system. Chem Phys Lipid 40:145–166CrossRefGoogle Scholar
  177. Wu Y, Zhou Q (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32:165–173CrossRefGoogle Scholar
  178. Xiong D, Li H (2008) Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology 19:465502CrossRefGoogle Scholar
  179. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90CrossRefGoogle Scholar
  180. Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78. doi: 10.1002/jat.1385 CrossRefGoogle Scholar
  181. Yin H, Ai S, Jing X, Shi W, Zhu L (2009) Amperometric biosensor based on immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon, carbofuran and phoxim. J Electroanal Chem 637:21–27CrossRefGoogle Scholar
  182. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2007) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769CrossRefGoogle Scholar
  183. Zhang X, Guo Q, Cui D (2009) Recent advances in nanotechnology applied to biosensors. Sensors 9:1033–1053CrossRefGoogle Scholar
  184. Zhang M, Yuan R, Chai Y, Wang C, Xiaoping W (2013) Cerium oxide–graphene as the matrix for cholesterol sensor. Anal Biochem 436:69–74CrossRefGoogle Scholar
  185. Zhu Z-J, Carboni R, Quercio MJ, Yan B, Miranda OR, Anderton DL, Arcaro KF, Rotello VM, Vachet RW (2010) Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small 6:2261–2265CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Nano-Bio Interfacial Research Laboratory (NBIRL), Department of BiotechnologySiddaganga Institute of TechnologyTumakuruIndia
  2. 2.Amity Institute of BiotechnologyAmity University RajasthanJaipurIndia

Personalised recommendations