Environmental Chemistry Letters

, Volume 16, Issue 1, pp 11–34 | Cite as

Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry



Nanomaterials may help to solve issues such as water availability, clean energy generation, control of drug-resistant microorganisms and food safety. Here we review innovative approaches to solve these issues using nanotechnology. The major topics discussed are wastewater treatment using carbon-based, metal-based and polymeric nanoadsorbents for removing organic and metal contaminants; nanophotocatalysis for microbial control; desalination of seawater using nanomembranes; energy conversion and storage using solar cells and hydrogen-sorbents nanostructures; antimicrobial properties of nanomaterials; smart delivery systems; biocompatible nanomaterials such as nanolignocellulosis and starches-based materials, and methods to decrease the toxicity of nanomaterials. Significantly, here it is reviewed two ways to palliate nanomaterials toxicity: (a) controlling physicochemical factors affecting this toxicity in order to dispose of more safe nanomaterials, and (b) harnessing greener synthesis of them to bring down the environmental impact of toxic reagents, wastes and byproducts. All these current challenges are reviewed at the present article in an effort to evaluate environmental implications of nanomaterials technology by means of a complete, reliable and critical vision.


Nanoadsorbents Nanophotocatalysis Solid-state hydrogen storage Solar cells Green synthesis Toxicity 



The Spanish Ministry of Economy and Competitiveness (MINECO) and JJCC Castilla-La Mancha are gratefully acknowledged for funding this work with Grants CTQ2016-78793-P and JCCM PEIC- 2014-001-P, respectively.


  1. Adlim A, Bakar MA (2008) Preparation of Chitosan-gold nanoparticles: Part 2. The role of Chitosan. Indo J Chem 8(3):320–326Google Scholar
  2. Adlim A, Bakar M (2013) The properties of Pd/Au bimetallic colloidal catalysts stabilized by chitosan and prepared by simultaneous and stepwise chemical reduction of the precursor ions. Kinet Catal 54(5):586–596. doi: 10.1134/S0023158413050017 CrossRefGoogle Scholar
  3. Agboola O, Maree J, Mbaya R (2014) Characterization and performance of nanofiltration membranes. Environ Chem Lett 12:241–255. doi: 10.1007/s10311-014-0457-3 CrossRefGoogle Scholar
  4. Agboola O, Maree J, Kolesnikov A, Mbaya R, Sadiku R (2015) Theoretical performance of nanofiltration membranes for waste water treatment. Environ Chem Lett 13:37–47. doi: 10.1007/s10311-014-0486-y CrossRefGoogle Scholar
  5. Ahamed M, Alhadlaq H, Khan M, Karuppiah P, Al-Dhab N (2014) Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J Nanomater. doi: 10.1155/2014/637858 Google Scholar
  6. Ahluwalia V, Kumar J, Sisodia R, Shakil N, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod 55:202–206. doi: 10.1016/j.indcrop.2014.01.026 CrossRefGoogle Scholar
  7. Ahmed M, Murtaza G, Mehmood A, Bhatti T (2015) Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: characterization and antibacterial activity. Mater Lett 153:10–13. doi: 10.1016/j.matlet.2015.03.143 CrossRefGoogle Scholar
  8. Allaker R (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1185. doi: 10.1177/0022034510377794 CrossRefGoogle Scholar
  9. OECD and Allianz (2008) Small sizes that matter: Opportunities and risks of nanotechnologies. Report in cooperation with the OECD International Futures Programme.
  10. Anand P, Isar J, Saran S, Saxena R (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97:1018–1025. doi: 10.1016/j.biortech.2005.04.046 CrossRefGoogle Scholar
  11. Arokiyaraj S, Saravanan M, Prakash N, Valan Arasu M, Vijayakumar B, Vincent S (2013) Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mater Res Bull 48:3323–3327. doi: 10.1016/j.materresbull.2013.05.059 CrossRefGoogle Scholar
  12. Aruguete DM, Bojeong K, Michael FH, Yanjun M, Yingwen C, Andy H, Jie L, Amy P (2013) Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci Process Impacts 15:93–102. doi: 10.1039/C2EM30692A CrossRefGoogle Scholar
  13. Ashwood P, Thompson R, Powell J (2007) Fine particles that adsorb lipopolysaccharide via bridging calcium cations may mimic bacterial pathogenicity towards cells. Exp Biol Med 232(1):107–117Google Scholar
  14. Auffan M, Rose J, Proux O, Borschneck D, Masion A, Chaurand P, Hazemann J, Haneac C, Jolivet J, Wiesner M, Van Geen A, Bottero J (2008) Enhanced adsorption of arsenic onto maghemites nanoparticles: As (III) as a probe of the surface structure and heterogeneity. Langmuir 24(7):3215–3222. doi: 10.1021/la702998x CrossRefGoogle Scholar
  15. Auffan M, Rose J, Bottero J, Lowry G, Jolivet J, Wiesner M (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641. doi: 10.1038/nnano.2009.242 CrossRefGoogle Scholar
  16. Ayranci E, Duman O (2005) Adsorption behaviors of some phenolic compounds onto high specific area activated carbon cloth. J Hazard Mater 124:125–132. doi: 10.1016/j.jhazmat.2005.04.020 CrossRefGoogle Scholar
  17. Ayranci E, Duman O (2006) Adsorption of aromatic organic acids onto high area activated carbon cloth. J Hazard Mater 136:542–552. doi: 10.1016/j.jhazmat.2005.12.029 CrossRefGoogle Scholar
  18. Ayranci E, Duman O (2007) Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy. J Hazard Mater 148:75–82. doi: 10.1016/j.jhazmat.2007.02.006 CrossRefGoogle Scholar
  19. Ayranci E, Duman O (2009) In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth. Sep Sci Technol 44:3735–3752. doi: 10.1080/01496390903182891 CrossRefGoogle Scholar
  20. Ayranci E, Duman O (2010) Structural effects on the interactions of benzene and naphthalene sulfonates with activated carbon cloth during adsorption from aqueous solutions. Chem Eng J 156:70–76. doi: 10.1016/j.cej.2009.09.038 CrossRefGoogle Scholar
  21. Baker S, Satish S (2015) Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L. Spectrochim Acta A 150:691–695. doi: 10.1016/j.saa.2015.05.080 CrossRefGoogle Scholar
  22. Balestra G (2014) Starch-based nanoparticles in sustainable agriculture. In: Proceedings in workshop on “Nanotechnology for the agricultural sector: from research to the field”. JRC Scientific and Policy Reports. European Commission. doi: 10.2791/80497
  23. Baruah S, Khan M, Dutta J (2016) Perspectives and applications of nanotechnology in water treatment. Environ Chem Lett 14:1–14. doi: 10.1007/s10311-015-0542-2 CrossRefGoogle Scholar
  24. Baruwati B, Polshettiwar V, Varma R (2009) Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 11:926–930. doi: 10.1039/B902184A CrossRefGoogle Scholar
  25. Batley G, Kirby J, McLaughlin M (2012) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862. doi: 10.1021/ar2003368 CrossRefGoogle Scholar
  26. Beard M, Midgett A, Hanna M, Luther J, Hughes B, Nozik A (2010) Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett 10(8):3019–3027. doi: 10.1021/nl101490z CrossRefGoogle Scholar
  27. Biener J, Stadermann M, Suss M, Worsley M, Biener M, Rose K, Baumann T (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667. doi: 10.1039/C0EE00627K CrossRefGoogle Scholar
  28. Bin Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxyacetate encapsulated in zinc-aluminium-layered double hydroxide. Sci Technol Adv Mater 6(8):956–962. doi: 10.1016/j.stam.2005.09.004 CrossRefGoogle Scholar
  29. Bindhu M, Umadevi M (2014) Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim Acta A 128:37–45. doi: 10.1016/j.saa.2014.02.119 CrossRefGoogle Scholar
  30. Boldyryeva H, Umeda N, Plaskin A, Takeda Y, Kishimoto N (2005) High-influence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Sur Coat Technol 196:373–377. doi: 10.1016/j.surfcoat.2004.08.159 CrossRefGoogle Scholar
  31. Brady-Estevez A, Schnoor M, Kang S, Elimelech M (2010) SWCNT-MWCNT hybrid filter attains high viral removal and bacterial inactivation. Langmuir 26(24):19153–19158. doi: 10.1021/la103776y CrossRefGoogle Scholar
  32. Brunet L, Lyon D, Hotze E, Alvarez P, Wiesner M (2009) Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43(12):4355–4360. doi: 10.1021/es803093t CrossRefGoogle Scholar
  33. Brunner T, Piusmanser P, Spohn P, Grass R, Limbach L, Bruinink A, Stark W (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381. doi: 10.1021/es052069i CrossRefGoogle Scholar
  34. Champion J, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934. doi: 10.1073/pnas.0600997103 CrossRefGoogle Scholar
  35. Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832. doi: 10.1021/nl049170q CrossRefGoogle Scholar
  36. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. doi: 10.1016/j.tifs.2011.09.004 CrossRefGoogle Scholar
  37. Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:12–22. doi: 10.1007/s10311-016-0600-4 CrossRefGoogle Scholar
  38. Chin T, Kok H, Yit T, Abdul R, Sharif H, Soon H (2012) Energy and environmental applications of carbon nanotubes. Environ Chem Lett 10:265–273. doi: 10.1007/s10311-012-0356-4 CrossRefGoogle Scholar
  39. Chinnamuthu C, Kokiladevi E (2007) Weed management through nanoherbicides. In: Chinnamuthu CR, Chandrasekaram B, Ramasamy C (eds) Application of nanotechnology in agriculture. Tamil Nadu Agricultural University, Coimbatore, IndiaGoogle Scholar
  40. Chompoosor A, Saha K, Ghosh P, Macarthy D, Miranda O, Zhu Z, Arcaro K, Rotello V (2010) The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 6(20):2246–2249. doi: 10.1002/smll.201000463 CrossRefGoogle Scholar
  41. Choucair M, Mauron P (2015) Versatile preparation of graphene-based nanocomposites and their hydrogen adsorption. Int J Hydrogen Energy 40:6158–6164. doi: 10.1016/j.ijhydene.2015.03.065 CrossRefGoogle Scholar
  42. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, Grodzik M, Orlowski P, Sokolowska A (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 5:1085–1094. doi: 10.2147/IJN.S13532 CrossRefGoogle Scholar
  43. Dasgupta N, Ramalingam Ch (2016) Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ Chem Lett 14:477–485. doi: 10.1007/s10311-016-0583-1 CrossRefGoogle Scholar
  44. Dhillon G, Brar S, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32(1):49–73. doi: 10.3109/07388551.2010.550568 CrossRefGoogle Scholar
  45. Diallo M (2009) Water treatment by dendrimer-enhanced filtration (DEF): principles and applications in Nanotechnology. Applications for clean water. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (ed) chapter 11. William Andrew Inc., Norwich. doi: 10.1016/B978-0-8155-1578-4.50020-2
  46. Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci: Nanosci Nanotechnol 3:10. doi: 10.1088/2043-6262/3/3/033002 Google Scholar
  47. Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19–23. doi: 10.5681/apb.2015.003 Google Scholar
  48. Du M, Zhan G, Yang X, Wang H, Lin W, Zhou Y, Zhu J, Lin L, Huang J, Sun D, Jia L, Li Q (2011) Ionic liquid-enhanced immobilization of biosynthesized Au nanoparticles on TS-1 toward efficient catalysts for propylene epoxidation. J Catal 283:192–201. doi: 10.1016/j.jcat.2011.08.011 CrossRefGoogle Scholar
  49. Duman O, Ayranci E (2005) Structural and ionization effects on the adsorption behaviors of some anilinic compounds from aqueous solution onto high-area carbon cloth. J Hazard Mater 120:173–181. doi: 10.1016/j.jhazmat.2004.12.030 CrossRefGoogle Scholar
  50. Duman O, Ayranci E (2006) Adsorption characteristics of benzaldehyde, sulphanilic acid and p-phenolsulfonate from water, acid or base solutions onto activated carbon cloth. Sep Sci Technol 41:3673–3692. doi: 10.1080/01496390600915072 CrossRefGoogle Scholar
  51. Duman O, Ayranci E (2010a) Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy. J Hazard Mater 174:359–367. doi: 10.1016/j.jhazmat.2009.09.058 CrossRefGoogle Scholar
  52. Duman O, Ayranci E (2010b) Attachment of benzo crown ethers onto activated carbon cloth to enhance the removal of chromium, cobalt and nickel ions from aqueous solutions by adsorption. J Hazard Mater 176:231–238. doi: 10.1016/j.jhazmat.2009.11.018 CrossRefGoogle Scholar
  53. Duman O, Tunc S, Polat TG (2015) Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent. Micropor Mesopor Mater 210:176–184. doi: 10.1016/j.micromeso.2015.02.040 CrossRefGoogle Scholar
  54. Duman O, Tunc S, Polat T, Bozoglan B (2016a) Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption. Carbohydr Polym 147:79–88. doi: 10.1016/j.carbpol.2016.03.099 CrossRefGoogle Scholar
  55. Duman O, Tunc S, Bozoglan B, Polat T (2016b) Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite. J Alloys Compd 687:370–383. doi: 10.1016/j.jallcom.2016.06.160 CrossRefGoogle Scholar
  56. Durgun E, Ciraci S, Yildirim T (2008) Functionalization of carbon based nanostructures with light transition-metal atoms for hydrogen storage. Phys Rev B 77:085405. doi: 10.1103/PhysRevB.77.085405 CrossRefGoogle Scholar
  57. Elumalai K, Velmurugan S (2015) Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci 345:329–336. doi: 10.1016/j.apsusc.2015.03.176 CrossRefGoogle Scholar
  58. European Commission (2014) Guidance on the protection of the health and safety of workers from the potential risks related to nanomaterials at work.
  59. Ferk G, Stergar J, Makovec D, Hamler A, Jagli Z, Drofenik M, Ban I (2015) Synthesis and characterization of Ni-Cu alloy nanoparticles with a tunable Curie temperature. J Alloys Compd 648:53–58. doi: 10.1016/j.jallcom.2015.06.067 CrossRefGoogle Scholar
  60. Fujishima A, Zhang T, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582. doi: 10.1016/j.surfrep.2008.10.001 CrossRefGoogle Scholar
  61. Garnett M, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles. Occup Med 56:307–311. doi: 10.1093/occmed/kql052 CrossRefGoogle Scholar
  62. Gaya UI, Abdullah Abdul H (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem PhotobiolC Photochem Rev 9(1):1–12. doi: 10.1016/j.jphotochemrev.2007.12.003 CrossRefGoogle Scholar
  63. Gogos A, Knauer K, Bucheli T (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792. doi: 10.1021/jf302154y CrossRefGoogle Scholar
  64. Goodman C, McCusker C, Yilmaz T, Rotello V (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 15:897–900. doi: 10.1021/bc049951i CrossRefGoogle Scholar
  65. Gruère G, Narrod C, Abboot L (2011) Agriculture, food and water technologies for the poor opportunities and constrains policy Brief 19, June 2011. International Food Policy Research Institute (IFPRI).
  66. Guang Lu et al (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316. doi: 10.1038/nchem.1272 CrossRefGoogle Scholar
  67. Gurr J, Wang A, Chen C, Jan K (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73. doi: 10.1016/j.tox.2005.05.007 CrossRefGoogle Scholar
  68. Gurunathan S, Han JW, Dayem A, Eppakayala V, Kim JH (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed 7:5901–5914. doi: 10.2147/IJN.S37397 CrossRefGoogle Scholar
  69. Hajipour M, Fromm K, Ashkarran A, Aberasturi D, Larramendi I, Rojo T, Serpooshan V, Parak W, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511. doi: 10.1016/j.tibtech.2012.06.004 CrossRefGoogle Scholar
  70. Helmut Kaiser Consultancy Group (2015) Study: nanotechnology in Food and Food processing Industry 2008–2010–2015.
  71. Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomed 7:2109–2113. doi: 10.2147/IJN.S29854 Google Scholar
  72. Hochella MF, Lower SK, Maurice PA (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635. doi: 10.1126/science.1141134 CrossRefGoogle Scholar
  73. Hoek E, Ghosh A (2009) Nanotechnology-based membranes for water purification in “Nanotechnology Applications for Clean Water”. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) chapter 4. William Andrew Inc., Norwich, NY. p 47. doi: 10.1016/B978-0-8155-1578-4.50013-5
  74. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki Y, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169. doi: 10.1021/nl048715d CrossRefGoogle Scholar
  75. Huang J, Zhan G, Zheng B, Sun D, Lu F, Lin Y, Chen H, Zheng Z, Zheng Y, Li Q (2011) Biogenic silver nanoparticles by Cacumen Platycladi extract: synthesis, formation mechanism, and antibacterial activity. Eng Chem Res 50:9095–9106. doi: 10.1021/ie200858y CrossRefGoogle Scholar
  76. Hussain S, Hess K, Gearhart J, Geiss K, Schlager J (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983. doi: 10.1016/j.tiv.2005.06.034 CrossRefGoogle Scholar
  77. INSHT (Instituto Nacional de Seguridad e Higiene en el Trabajo) (2015) Seguridad y Salud en el trabajo con nanomaterialsGoogle Scholar
  78. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. doi: 10.1039/c1gc15386b CrossRefGoogle Scholar
  79. Iyakutti K, Kawazoe Y, Rajarajeswari M, Surya V (2009) Aluminum hydride coated single-walled carbon nanotube as a hydrogen storage medium. Int J Hydrogen Energy 34:370–375. doi: 10.1016/j.ijhydene.2008.09.086 CrossRefGoogle Scholar
  80. Ji L, Chen W, Duan L, Zhu D (2009) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 43(7):2322–2327. doi: 10.1021/es803268b CrossRefGoogle Scholar
  81. Johnston C (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279. doi: 10.1180/claymin.2010.045.3.245 CrossRefGoogle Scholar
  82. Kharissova O, Dias R, Kharisov B, Olvera Pérez B, Jiménez Pérez V (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248. doi: 10.1016/j.tibtech.2013.01.003 CrossRefGoogle Scholar
  83. Khodakovskaya M, Dervishi E, Mahmood M, Yang X, Zhongrui L, Watanabe F, Biris A (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227. doi: 10.1021/nn900887m CrossRefGoogle Scholar
  84. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. doi: 10.1016/j.cropro.2012.01.007 CrossRefGoogle Scholar
  85. Kim H, Karkamkar A, Autrey T, Chupas P, Proffen T (2009) Determination of structure and phase transition of light element nanocomposites in mesoporous silica: case study of NH3BH3 MCM-41. J Am Chem Soc 131(38):13749–13755. doi: 10.1021/ja904901d CrossRefGoogle Scholar
  86. Kim J, Lee C, Choi W (2010) Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44(17):6849–6854. doi: 10.1021/es101981r CrossRefGoogle Scholar
  87. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier A, Gaub H, Stozle S, Fertig N, Parak W (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338. doi: 10.1021/nl047996m CrossRefGoogle Scholar
  88. Kitching M, Ramani M, Marsili E (2014) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol. doi: 10.1111/1751-7915.12151 Google Scholar
  89. Koeppenkastrop D, Decarlo E (1993) Uptake of rare-earth elements from solution by metal-oxides. Environ Sci Technol 27(9):1796–1802. doi: 10.1021/es00046a006 CrossRefGoogle Scholar
  90. Kruk T, Szczepanowicz K, Stefanska J, Socha R, Warszynski P (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloid Surf B 128:17–22. doi: 10.1016/j.colsurfb.2015.02.009 CrossRefGoogle Scholar
  91. Laborie MPG (2009) Bacterial cellulose and its polymeric nanocomposites. In: Lucia LA, Rojas OJ (eds) The nanoscience and technology of renewable biomaterials (chapter 9). Wiley, ChichesterGoogle Scholar
  92. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32. doi: 10.4489/MYCO.2011.39.1.026 CrossRefGoogle Scholar
  93. Lee J, Mackeyev Y, Cho M, Wilson L, Kim J, Alvarez P (2010) C(60) aminofullerene immobilized on silica as a visible light-activated photocatalyst. Environ Sci Technol 44(24):9488–9495. doi: 10.1021/es1028475 CrossRefGoogle Scholar
  94. Leistritz FL, Hodur N, Senechal D, Stowers M, McCalla D, Saffron C (2007) Biorefineries using agricultural residue feedstock in the great plains. AAE Report 07001 working paper, Agricultural Experiment Station, North Dakota State University, Department of Agribusiness and Applied Economics.
  95. Leroueil P, Hong S, Mecke A, Baker J, Orr B, Banaszak M (2007) Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem Res 40:335–342. doi: 10.1021/ar600012y CrossRefGoogle Scholar
  96. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49. doi: 10.1002/smll.200700595 CrossRefGoogle Scholar
  97. Li Z, Chen JF, Liu F (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63(3):241–246. doi: 10.1002/ps.1301 CrossRefGoogle Scholar
  98. Lim K, Kazemian H, Yaakob Z, Daud W (2010) Solid-state materials and methods for hydrogen storage: a critical review. Chem Eng Technol 33:213–226. doi: 10.1002/ceat.200900376 CrossRefGoogle Scholar
  99. Limbach L, Wick P, Manser P, Grass R, Bruinink A, Stark W (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163. doi: 10.1021/es062629t CrossRefGoogle Scholar
  100. Liu F, Wen L-X, Li Z-Z, Yu W, Sun H-Y, Chen J-F (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275. doi: 10.1016/j.materresbull.2006.04.014 CrossRefGoogle Scholar
  101. Liu C, Li F, Ma L, Cheng H (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62. doi: 10.1002/adma.200903328 CrossRefGoogle Scholar
  102. Liu S, Zeng T, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980. doi: 10.1021/nn202451x CrossRefGoogle Scholar
  103. Liu J, Notarianni M, Ll Rintou, Motta N (2014) Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods. Beilstein J Nanotechnol 5:485–493. doi: 10.3762/bjnano.5.56 CrossRefGoogle Scholar
  104. Lochan R, Head-Gordon M (2006) Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys Chem Chem Phys 8:1357–1370. doi: 10.1039/B515409J CrossRefGoogle Scholar
  105. Lok CN, Ho CM, Chen R, He QY, Yu W, Sun H, Tam P, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi: 10.1021/pr0504079 CrossRefGoogle Scholar
  106. Lu S, Chiu H, Liu CT (2006) Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45(8):2850–2855. doi: 10.1021/ie051206h CrossRefGoogle Scholar
  107. Machado S, Pinto S, Grosso J, Nouws H, Albergaria J, Delerue-Matos C (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445–446:1–8. doi: 10.1016/j.scitotenv.2012.12.033 CrossRefGoogle Scholar
  108. Mahmood M (2011) Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Mater Chem Phys 30(1–2):531–535. doi: 10.1016/j.matchemphys.2011.07.018 CrossRefGoogle Scholar
  109. Mahmoudi M, Serpooshan V (2011) Large protein absorptions from small changes on the surface of nanoparticles. J Phys Chem C 115:18275–18283. doi: 10.1021/jp2056255 CrossRefGoogle Scholar
  110. Mathew AP, Laborie M, Oksman K (2009) Cross-linked chitosan-chitin whiskers nanocomposites with improved permeation selectivity and pH stability. Biomacromol 10(6):1627–1632. doi: 10.1021/bm9002199 CrossRefGoogle Scholar
  111. McNicholas P, Wang A, O’Neill K, Anderson R, Stadie N, Kleinhammes A, Parilla P, Simpson L, Ahn C, Wang Y, Wu Y, Liu J (2010) H2 storage in microporous carbons from PEEK precursors. J Phys Chem C 114:13902–13908. doi: 10.1021/jp102178z CrossRefGoogle Scholar
  112. Meena M, Jacob J, Philip D (2015) Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochim Acta A 137:185–192. doi: 10.1016/j.saa.2014.08.079 CrossRefGoogle Scholar
  113. Milani N, McLaughlin M, Stacey SP (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60(16):3991–3998. doi: 10.1021/jf205191y CrossRefGoogle Scholar
  114. Moaveni P, Talebi R, Farahani H, Maroufi K, Maroufi K (2011) Study of TiO2 nano particles spraying effect on the some physiological parameters in Barley (Hordem Vulgare L.). Adv Environ Biol 5(7):1663–1667Google Scholar
  115. Murphy K (2008) Nanotechnology: agriculture’s next “Industrial” revolution, 3-5. Financial Partner, Spring pp 3–5Google Scholar
  116. Namazi H, Adeli M, Zarnegar Z Jafari, Dadkhah S, Shukla A (2007) Encapsulation of nanoparticles using linear–dendritic macromolecules. Colloid Polym Sci 285(14):1527–1533. doi: 10.1007/s00396-007-1717-6 CrossRefGoogle Scholar
  117. Nanotechnology in Agriculture: Scope and Current Relevance (2013). National Academy of Agricultural Sciences, New Delhi, December 2013. Policy Paper.
  118. Narayanan K, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface 156:1–13. doi: 10.1016/j.cis.2010.02.001 CrossRefGoogle Scholar
  119. Nel A, Xia T, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi: 10.1126/science.1114397 CrossRefGoogle Scholar
  120. Niskanen J, Shan J, Tenhu H, Jiang H, Kauppinen E, Barranco V, Pico F, Yliniemi K, Kontturi K (2010) Synthesis of copolymer stabilized silver nanoparticles for coating materials. Colloid Polym Sci 288:543–553. doi: 10.1007/s00396-009-2178-x CrossRefGoogle Scholar
  121. Nozik J (2008) Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 457:3–11. doi: 10.1016/j.cplett.2008.03.094 CrossRefGoogle Scholar
  122. Owolade O, Ogunleti D (2008) Effects of titanium dioxide on the diseases, development and yield of edible cowpea. J Plant Prot Res 48(3):329–336CrossRefGoogle Scholar
  123. Papp T, Schiffmannp D, Weiss D, Castranova V, Vallyathan V, Rahman Q (2008) Human health implications of nanomaterial exposure. Nanotoxicology 2:9–27. doi: 10.1080/17435390701847935 CrossRefGoogle Scholar
  124. Park T, Lee K, Lee S (2016) Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol 100:521–534. doi: 10.1007/s00253-015-6904-7 CrossRefGoogle Scholar
  125. Parsons J, Peralta-Videa J, Gardea-Torresdey J (2007) Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Environ Sci 5:463–485. doi: 10.1016/S1474-8177(07)05021-8 Google Scholar
  126. Pendergast M, Hoek E (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971. doi: 10.1039/c0ee00541j CrossRefGoogle Scholar
  127. Pendergast M, Nygaard J, Ghosh K, Hoek E (2010) Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261(3):255–263. doi: 10.1016/j.desal.2010.06.008 CrossRefGoogle Scholar
  128. Petersen E, Nelson B (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398:613–650. doi: 10.1007/s00216-010-3881-7 CrossRefGoogle Scholar
  129. Peter-Varbanets M, Zurbrugg C, Swartz C, Pronk W (2009) Decentralized systems for potable water and the potential of membrane technology. Water Res 43(2):245–265. doi: 10.1016/j.watres.2008.10.030 CrossRefGoogle Scholar
  130. Pişkin S, Palantöken A, Yılmaz M (2013) Antimicrobial activity of synthesized TiO2 nanoparticles. In: International conference on emerging trends in engineering and technology (ICETET’2013) Dec 7–8, 2013 Patong Beach, Phuket (Thailand)Google Scholar
  131. Prucek R, Tucek J, Kilianová M, Panácek A, Kvítek L, Filip J, Kolár M, Tománková Katerina, Zboril R (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32:4704–4713. doi: 10.1016/j.biomaterials.2011.03.039 CrossRefGoogle Scholar
  132. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674. doi: 10.1039/C0EE00295J CrossRefGoogle Scholar
  133. Rahaman M, Vecitis C, Elimelech M (2012) Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ Sci Technol 46(3):1556–1564. doi: 10.1021/es203607d CrossRefGoogle Scholar
  134. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852. doi: 10.1111/j.1365-2672.2012.05253.x CrossRefGoogle Scholar
  135. Ranjan S, Ramalingan Ch (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen generation. Environ Chem Lett 14:487–494. doi: 10.1007/s10311-016-0586-y CrossRefGoogle Scholar
  136. Rao G, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231. doi: 10.1016/j.seppur.2006.12.006 CrossRefGoogle Scholar
  137. Ravindran A, Chandran P, Khan S (2013) Biofunctionalized silver nanoparticles: advances and prospects. Colloid Surface B 105:342–352. doi: 10.1016/j.colsurfb.2012.07.036 CrossRefGoogle Scholar
  138. Regulatory Considerations for Nanopesticides and Veterinary Nanomedicines (2014) A draft APVMA report. Australian Governement.
  139. Robertson C, Mokaya R (2013) Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage. Micropor Mesopor Mater 179:151–156. doi: 10.1016/j.micromeso.2013.05.025 CrossRefGoogle Scholar
  140. Sanchez-Mendieta V, Vilchis-Nestor A (2012) Green synthesis of noble metal (Au, Ag, Pt) nanoparticles, assisted by plant-extracts. In: Yen-Hsun S (ed) Noble metals, INTECH, pp 391–408. doi: 10.5772/34335
  141. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46:2560–2566. doi: 10.1016/j.materresbull.2011.07.046 CrossRefGoogle Scholar
  142. Sangeetha G, Rajeshwari S, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A 97:1140–1144. doi: 10.1016/j.saa.2012.07.096 CrossRefGoogle Scholar
  143. Santhoshkumar T, Rahuman A, Jayaseelan Ch, Rajakumar G, Marimuthu S, Kirthi A, Velayutham K, Thomas J, Venkatesan J, Kim S (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Dis. doi: 10.1016/S1995-7645(14)60171-1 Google Scholar
  144. Santos C, Albuquerque R, Sampaio F, Keyson D (2013) Nanomaterials with antimicrobial properties: applications in health sciences. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education.
  145. Sassolas A, Blum L, Leca-Bouvier B (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3):489–511. doi: 10.1016/j.biotechadv.2011.09.003 CrossRefGoogle Scholar
  146. Saxena R, Williams W, Mcgee J, Daniels M, Boykin E, Gilmour I (2007) Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single-wall carbon nanotubes. Nanotoxicology 1:291–300. doi: 10.1080/17435390701803110 CrossRefGoogle Scholar
  147. Schneider J (2007) Can microparticles contribute to inflammatory bowel disease: innocuous or inflammatory? Exp Biol Med 232:1–2Google Scholar
  148. Scott N, Chen H (2003) Nanoscale science and engineering on agriculture and food systems. In: Roadmap report of national planning workshop. Washington DC, November 18–19, 2002.
  149. Sculley J, Yuan D, Zhou H (2011) The current status of hydrogen storage in metal–organic frameworks—updated. Energy Environ Sci 4:2721–2735. doi: 10.1039/C1EE01240A CrossRefGoogle Scholar
  150. Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. doi: 10.1039/c1cs15188f CrossRefGoogle Scholar
  151. Sharma Y, Srivastava V, Singh V, Kaul S, Weng C (2009) Nano-adsorbents for the removal of metallic pollutants from water and waste water. Environ Technol 30(6):583–609. doi: 10.1080/09593330902838080 CrossRefGoogle Scholar
  152. Singh S, Kumar B, Yadav S, Gupta K (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5(1):1–5. doi: 10.3923/rjnn.2015.1.5 CrossRefGoogle Scholar
  153. Smuleac V, Varmab R, Sikdarb S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membr Sci 379:131–137. doi: 10.1016/j.memsci.2011.05.054 CrossRefGoogle Scholar
  154. Song Y, Li X, Du X (2009) Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34:559–567. doi: 10.1183/09031936.00178308 CrossRefGoogle Scholar
  155. Stebounova L, Guio E, Grassian V (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation and dissolution. J Nanopart Res 13(1):233–244. doi: 10.1007/s11051-010-0022-3 CrossRefGoogle Scholar
  156. Sugunan A, Warad H, Thanachayamont C, Dutta J and Hoffmann H (2005) Zinc oxides nanowires on non-epitaxial substrates from colloidal processing for gas sensing applications. In: Vaseashta A, Dimova-Malinovska D, Marshall J (eds) Proceedings of NATO advanced study institute on nanostructured and advanced materials for applications in sensors, optoelectronic and photovoltaic technology, (NATO Science Series II: Mathematics, Physics and Chemistry, vol 204) XI, Springer, Berlin, p 425Google Scholar
  157. Sukla AK, Iravani S (2017) Metallic nanoparticles: green synthesis and spectroscopic characterization. Environ Chem Lett. doi: 10.1007/s10311-017-0618-2 Google Scholar
  158. Surya V, Iyakutti K, Rajarajeswari M, Kawazoe Y (2009) Functionalization of single-walled carbon nanotube with borane for hydrogen storage. Physica E 41:1340–1346. doi: 10.1016/j.physe.2009.03.007 CrossRefGoogle Scholar
  159. Surya V, Iyakutti K, Venkataramanan N, Mizuseki H, Kawazoe Y (2010) The role of Li and Ni metals in the adsorbate complex and their effect on the hydrogen storage capacity of single walled carbon nanotubes coated with metal hydrides, LiH and NiH2. Int J Hydrog Energy 35:2368–2376. doi: 10.1016/j.ijhydene.2010.01.001 CrossRefGoogle Scholar
  160. Sweet J, Chesser A, Singleton I (2012) Review: metal-based nanoparticles; size, function, and areas for advancement in applied microbiology. Adv Appl Microbiol 80:13–42. doi: 10.1016/B978-0-12-394381-1.00005-2 Google Scholar
  161. Tarafdar JC, Agrawal A, Raliya R, Kumar P, Burman U, Kaul R (2012a) ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. Adv Sci Eng Med 4:1–5. doi: 10.1166/asem.2012.1160 CrossRefGoogle Scholar
  162. Tarafdar JC, Raliya R, Rathore I (2012b) Microbial synthesis of phosphorus nanoparticles from Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89. doi: 10.1166/jbns.2012.1077 CrossRefGoogle Scholar
  163. Tegos P, Demidova N, Arcila-Lopez D, Lee H, Wharton T, Gali H, Hamblin M (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol 12(10):1127–1135. doi: 10.1016/j.chembiol.2005.08.014 CrossRefGoogle Scholar
  164. Tetreault N, Arsenault E, Heiniger L, Soheilnia N, Brillet J, Moehl S, Zakeeruddin G, Ozin A, Grätzel M (2011) High-efficiency dye-sensitized solar cell with three-dimensional photoanode. Nano Lett 11:4579–4584. doi: 10.1021/nl201792r CrossRefGoogle Scholar
  165. Tripathi S, Sonkar SK, Sarker S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176–1181. doi: 10.1039/c0nr00722f CrossRefGoogle Scholar
  166. Trivedi P, Axe L (2000) Modelling Cd and Zn sorption to hydrous metal oxides. Environ Sci Technol 34(11):2215–2223. doi: 10.1021/es991110c CrossRefGoogle Scholar
  167. Varma S (2012) Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng 1:123–128. doi: 10.1016/j.coche.2011.12.002 CrossRefGoogle Scholar
  168. Vecitis C, Zodrow K, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4(9):5471–5479. doi: 10.1021/nn101558x CrossRefGoogle Scholar
  169. Vecitis C, Schnoor H, Rahaman S, Schiffman J, Elimelech M (2011) Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ Sci Technol 45(8):3672–3679. doi: 10.1021/es2000062 CrossRefGoogle Scholar
  170. Vörösmarty C, McIntyre P, Gessner M, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn S, Sullivan C, Liermann C, Davies P (2010) Global threats to human water security and river biodiversity. Nature. doi: 10.1038/nature09440 Google Scholar
  171. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gai Y, Li B, Sun J, Li Y, Jiao F, Zhan Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Let 168(2):176–185. doi: 10.1016/j.toxlet.2006.12.001 CrossRefGoogle Scholar
  172. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel A (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 23:2121–2134. doi: 10.1021/nn800511k CrossRefGoogle Scholar
  173. Xiaolei Q, Alvarez J, Qilin L (2013) Applications of nanotechnology in water and waste water treatment. Water Res 47:3931–3946. doi: 10.1016/j.watres.2012.09.058 CrossRefGoogle Scholar
  174. Xiong J, Wang Y, Xue Q, Wu X (2011) Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem 13:900–904. doi: 10.1039/c0gc00772b CrossRefGoogle Scholar
  175. Xiu Z, Ma J, Alvarez P (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008. doi: 10.1021/es201918f CrossRefGoogle Scholar
  176. Xiu Z, Zhang Q, Puppala H, Colvin V, Alvarez P (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275. doi: 10.1021/nl301934w CrossRefGoogle Scholar
  177. Xue X, Cheng R, Shi L, Zhong M, Zheng X (2017) Nanomaterials for water pollution monitoring and remediation. Environ Chem Lett 15:23–27. doi: 10.1007/s10311-016-0595-x CrossRefGoogle Scholar
  178. Yadav S, Tam J, Veer Singh Ch (2015) A first principles study of hydrogen storage on lithium decorated two dimensional carbon allotropes. Int J Hydrog Energy 40:6128–6136. doi: 10.1016/j.ijhydene.2015.03.038 CrossRefGoogle Scholar
  179. Yallappa S, Manjanna J, Dhananjaya B (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A137:236–243. doi: 10.1016/j.saa.2014.08.030 CrossRefGoogle Scholar
  180. Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110(10):5989–6008. doi: 10.1021/cr100059s CrossRefGoogle Scholar
  181. Yang K, Wu W, Jing Q, Zhu L (2008) Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ Sci Technol 42(21):7931–7936. doi: 10.1021/es801463v CrossRefGoogle Scholar
  182. Yao K, Li S, Tzeng T, Cheng C, Chang C (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516. doi: 10.4028/ CrossRefGoogle Scholar
  183. Yavuz C, Mayo J, Yu W, Prakash A, Falkner C, Yean S, Cong L, Shipley H, Kan A, Tomson M, Natelson D, Colvin V (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801):964–967. doi: 10.1126/science.1131475 CrossRefGoogle Scholar
  184. Yong J, Kwon E, Soo B (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164. doi: 10.1007/s00449-009-0373-2 CrossRefGoogle Scholar
  185. Zhan G, Huang J, Du M, Sun D, Abdul-Rauf I, Lin W, Hong Y, Li Q (2012) Liquid phase oxidation of benzyl alcohol to benzaldehyde with novel uncalcined bioreduction Au catalysts: high activity and durability. Chem Eng J 187:232–238. doi: 10.1016/j.cej.2012.01.051 CrossRefGoogle Scholar
  186. Zhang Y, Jiang G, Wong Ka W, Zheng Z (2010) Green synthesis of indium oxide hollow spheres with specific sensing activities for flammable organic vapors. Sensor Lett 8:355–361. doi: 10.1166/sl.2010.1277 CrossRefGoogle Scholar
  187. Zhang Q, Yodyingyong S, Xi J, Myers D, Cao G (2012) Oxide nanowires for solar cell applications. Nanoscale 4:436–1445. doi: 10.1039/C2NR11595F Google Scholar
  188. Zhang Q, Uchaker E, Candelaria S, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171. doi: 10.1039/c3cs00009e CrossRefGoogle Scholar
  189. Zhao M, Xia Q, Feng X, Zhu X, Mao Z, Jiand L, Wang K (2010) Synthesis, biocompatibility and cell labeling of l-arginine-functional β-cyclodextrin-modified quantum dot probes. Biomaterials 31:4401–4408. doi: 10.1016/j.biomaterials.2010.01.114 CrossRefGoogle Scholar
  190. Zhou Y, Lin W, Huang J, Wang W, Gao Y, Lin L, Li Q, Lin L, Du M (2010) Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts. Nanoscale Res Lett 5:1351–1359. doi: 10.1007/s11671-010-9652-8 CrossRefGoogle Scholar
  191. Zhu Z, Wang H, Yan B, Zheng H, Jiang Y, Miranda O, Rotello V, Xing B, Vachet R (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46(22):12391–12398. doi: 10.1021/es301977w CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Analytical Chemistry and Food TechnologyUniversity of Castilla-La ManchaCiudad RealSpain

Personalised recommendations