, Volume 15, Issue 1, pp 10–15 | Cite as

Antihepatoxic activity of Rhamnus alaternus L. (Rhamnaceae) leaves extracts



Rhamnus alaternus L. (Rhamnaceae) had been the object of number of therapeutic indications in traditional medicine in the Mediterranean area. Our study intends to compare the hepatotoxic effects of two plant extracts especially two aqueous lyophilized extracts (decocted and macerated); all administered to different batch rats initially jaundiced made by injection of the hepatotoxic. The reference antihepatotoxic product used is the silymarine (100 mg/kg). The two extracts (250 mg/kg) had witnessed a significative antihepatotoxic action (p<0,05) expressed by enzymatic biochemical markers reduction percentage, especially the transaminases (ASAT/SGOT; ALAT/SGPT), the alkaline phosphatase (ALP) and direct bilirubine (DBil). The reduction mean percentages of antihepatotoxic activity were: 76,28% (lyophilized decocted); 74,16% (lyophilized macerated); 44,68% (silymarine). These results illustrate the antihepatotoxic pharmacological action of two extracts used of this plant.


Antihepatotoxic effect Rhamnus alaternus L. Lyophilized extracts Silymarine 

Activité antihépatotoxique des extraits des feuilles de Rhamnus alaternus L. (Rhamnaceae)


Rhamnus alaternus L. (Rhamnaceae) a fait l’objet de nombreuses indications thérapeutiques en médecine traditionnelle dans la région méditerranéenne. Notre étude projette de comparer les effets anti-hépatotoxiques de deux extraits de la plante notamment deux extraits aqueux lyophilisés (décocté et macéré) ; tous administrés à différents lots de rats rendus initialement ictériques par injection de l’hépatotoxique. Le produit de référence antihépatotoxique utilisé est la silymarine (100 mg/kg). Les deux extraits (250 mg/kg) ont témoigné une action antihépatotoxique significative (p<0,05) exprimée par un pourcentage de réduction des marqueurs biochimiques enzymatiques notamment les transaminases (ASAT/GOT, ALAT/GPT), la phosphatase alcaline (PAL) et la bilirubine directe (DBil). Les pourcentages moyens de réduction de l’activité antihépatotoxique ont été de: 76,28% (décocté lyophilisé), 74,16% (macéré lyophilisé), 44,68% (silymarine). Ces résultats illustrent l’action pharmacologique antihépatotoxique des deux extraits utilisés de la plante.

Mots clés

Effet antihépatotoxique Rhamnus alaternus L. Extraits lyophilisé Silymarine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mai LP, Gu_Ñritte FÏ, Dumontet V, et al (2001) Cytotoxicity of Rhamnosylanthraquinones and Rhamnosylanthrones from Rhamnus nepalensis. J Nat Prod 64: 1162–8CrossRefPubMedGoogle Scholar
  2. 2.
    Ammar RB, Sghaier MB, Boubaker J, et al (2008). Antioxidant activity and inhibition of aflatoxin B1-, nifuroxazide-, and sodium azide-induced mutagenicity by extracts from Rhamnus alaternus L. Chem Biol Inter 174: 1–10Google Scholar
  3. 3.
    Bhouri W, Ben Sghaier M, Kilani S, et al (2011) Evaluation of antioxidant and antigenotoxic activity of two flavonoids from Rhamnus alaternus L. (Rhamnaceae): Kaempferol 3-O-b-isorhamninoside and rhamnocitrin 3-O-b-isorhamninoside. Food Chem Toxicol 49: 1167–73CrossRefPubMedGoogle Scholar
  4. 4.
    Ammar RB, Bhouri W, Sghaier MB, et al (2009) Antioxidant and free radical-scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L. (Rhamnaceae): A structureactivity relationship study. Food Chem 116: 258–64Google Scholar
  5. 5.
    Kosalec I, Kremer D, Locatelli M, et al (2013) Anthraquinone profile, antioxidant and antimicrobial activity of bark extracts of Rhamnus alaternus, R. fallax, R. intermedia and R. pumila. Food Chem 136: 335–41CrossRefPubMedGoogle Scholar
  6. 6.
    Fleurentin J, Lexa A, Younos C (1990) Study of anti-hepatoxicity of Eupatorium cannabinum L. in mice: an adequate method for screening in vivo antihepatotoxic natural principales. Phytother Res 4: 145–51Google Scholar
  7. 7.
    Rao KS, Mishra SH (1997) Hepatoprotective activity of Inula racemosa root. Fitoterapia 68: 510–4Google Scholar
  8. 8.
    Sourabié TS, Nikiéma JB, Nacoulma OG, et al (2006) Etude préliminaire du pouvoir antihépatotoxique d’une plante de la pharmacopée burkinabé préconisé dans le traitement traditionnel de la jaunisse: cas d’Argemone mexicana L. (Papaveraceae). J Soc Path Exot 2-3 Novembre, OuagadagoudouGoogle Scholar
  9. 9.
    Sourabié TS, Nikiéma JB, Nacoulma OG, et al (2012) Etude comparée des effets antihépatotoxiques d’extraits d’Argemone mexicana L. (Papaveraceae) une plante utilisés dans le traitement traditionnel de la jaunisse au Burkina Faso. Int Biol Chem Sci 6: 1139–47Google Scholar
  10. 10.
    Lega I (2010) Evaluation des propriétés antibactériennes in vitro d’extraits de feuilles d’Argemone mexicana L. (Papaveraceae) Thèse de doctorat en pharmacie, UFR/SDS, Université de Ouagadougou, p. 62Google Scholar
  11. 11.
    Shah PA, Parmar MY, Thakkar VT, et al (2010) Protective effect of Hordeum vulgare Linn. on acetaminophen-induced Liver Damage. J Young Pharm 1: 336–40CrossRefGoogle Scholar
  12. 12.
    Sanmugapriya E, Venkataraman S (2006) Studies on hepatoprotective and antioxidant actions of Strychnos potatorum Linn. seeds on CCl4-induced acute hepatic injury in experimental rats. J Ethnopharmacol 105: 154–60CrossRefPubMedGoogle Scholar
  13. 13.
    Suja SR, Latha PG, Pushpangadan P, et al (2004) Evaluation of hepatoprotective effects of Helminthostachys zeylanica (L) Hook against carbon tetrachloride induced liver damage in Wistar rats. J Ethnopharmacol 92: 61–6CrossRefPubMedGoogle Scholar
  14. 14.
    Sarada K, Jothibai Margret R, Mohan VR (2012) Hepatoprotective and Antioxidant Activity of Ethanol Extracts of Naringi crenulata (ROXB) NICOLSON against CCL4 induced hepatotoxicity in rats. IJPSR 3: 874–80Google Scholar
  15. 15.
    Petet AA, Casimir IO (2010) Hepatoprotective effect of the solvent fractions of the stem of Hoslundia opposita Vahl (Lamiaceae) against carbon tetrachloride and paracetamol induced liver damage in rats. Int J Green Pharm 4: 54–8CrossRefGoogle Scholar
  16. 16.
    Letteron P, Labbe G, Degott C, et al (1990) Mechanism for the protective effects of silymarin against carbon tetrachloride induced lipid peroxydation and hepatotoxicity in mice. Evidence that silymarin acts both as an inibithor of metabolic activationand as a chainbreaking antioxidant. Biochem Pharmacol 39: 2027–34CrossRefPubMedGoogle Scholar
  17. 17.
    Singh B, Saxena AK, Chandan BK, et al (1998) Hepatoprotective activity of verbenalin on experimental liver damage in rodents. Fitoterapia 69: 134–40Google Scholar
  18. 18.
    Ozturk IC, Ozturk F, Gul M, et al (2009) Protective effects of ascorbic acid on hepatotoxicity and oxidative stress caused by carbon tetrachloride in the liver of Wistar rats. Cell Biochem Function 27: 309–15CrossRefGoogle Scholar
  19. 19.
    Elberry AA, Fathalla M, Harraz A, et al (2010) Antihepatotoxic effect of Marrubium vulgare and Withania somnifera extracts on carbon tetrachloride-induced hepatotoxicity in rats. J Basic Clin Pharm 1: 247–54PubMedPubMedCentralGoogle Scholar
  20. 20.
    Sallie R, Tredger JM, William R (1991) Drugs and the liver. Part I. “Testing liver function”. Biopharm Drug Disp 12: 251–59CrossRefGoogle Scholar
  21. 21.
    Ashok Shenoy K, Somayaji SN, Bairy KL (2001) Hepatoprotective effect of Ginkgo biloba against carbon tetrachloride induced hepatic injury in rats. Ind J Pharmacol 33: 260–6Google Scholar
  22. 22.
    Achliya GS, Wadodkar SG, Dorle AK (2004) Evaluation of hepatoprotective effect of Amalkadi Ghrita against carbon tetrachloride induced hepatic damage in rats. J Ethnopharmacol 90: 229–32CrossRefPubMedGoogle Scholar
  23. 23.
    Rathi A, Srivastava AK, Shirwaikar A, et al (2008) Hepatoprotective potential of Fumaria indica Pugsley whole plant extracts fractions and an isolated alkaloid protopine. Phytomedicine 15:470–7CrossRefPubMedGoogle Scholar
  24. 24.
    Letteron P, Labbe G, Degott C, et al (1990) Mechanism for the protective effects of Silymarin against carbon tetrachloride induced lipid and hepatotoxicity in mice. Evidence that Silymarin acts both as an inhibitor of metabolic activation and as a chainbreaking antioxidant. Biochem Pharmacol 39:2027–34CrossRefPubMedGoogle Scholar
  25. 25.
    Krishna KL, Mruthunjaya K, Patel JA (2009) Antioxident and hepatoprotective activity of leaf extract of Justicia gendarussa Burm. Internat J Biol Chem 3:99–110CrossRefGoogle Scholar
  26. 26.
    Chiu HF, Lin CC, Yen SMH, et al. (1992) Pharmacological and studies on hepatic protective crude drugs from Taiwan (V): the effects of Bombax malabarica and Scutellaria rivularis. Am J Chin Med 20:257–64CrossRefPubMedGoogle Scholar
  27. 27.
    Ye YN, Liu ES, Li Y, et al (2001) Protective effect of polysaccharides-enriched fraction from Angelica sinensis on hepatic injury. Life Sci 69: 637–46CrossRefPubMedGoogle Scholar
  28. 28.
    Yudav NP, Dixit VK (2003) Hepatoprotective activity of leaves of Kalanchoe pinnata Pers. J Ethnopharmacol 86:197–202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  • W. Benchiha
    • 1
  • S. Mahroug
    • 1
  • L. Aoued
    • 2
  • K. Bouterfas
    • 1
  1. 1.Laboratoire de biodiversité végétale : conservation et valorisation, faculté des sciences de la nature et de la vieuniversité Djillali-LiabesSidi Bel AbbésAlgérie
  2. 2.Laboratoire de synthèse de l’information environnementale, faculté de médecineuniversité Djillali-LiabesSidi Bel AbbésAlgérie

Personalised recommendations