Advertisement

Phytothérapie

, Volume 15, Issue 1, pp 16–22 | Cite as

Anti-oxidant and anti-microbial properties of Myrtus nivellei Batt & Trab extracts obtained in situ and in vitro

Pharmacognosie

Abstract

This work provides a contribution to the investigation and valorization of the Sahara-endemic plant: Myrtus nivellei Batt & Trab and the evaluation of the antioxidant effect of methanolic extracts harvested in situ, and in vitro propagated calli of this plant. Several spectrophotometric analyzes were performed, showing that the in situ methanolic extract was richer in polyphenols than the in vitro methanolic extract. Also, It expressed a good power to scavenge free radicals (EC50 = 0.98 mg/ml) and a great capacity to inhibit the peroxidation of linoleic acid estimated as 74.01%, largely higher than the ascorbic acid (50.57%) used as a positif control. However, the methanolic extracts of calli expressed the best ferric reducing power estimated as 66.71%. A very good antimicrobial activity was recorded for the extract of the plant harvested in situ, particularly against S. aureus (MIC=2.25 mg/ml), also against S. pneumoniae, S. flexineri, S. typhi and C. albicans (MIC=4.5 mg/ml). However, the calli extracts had presented no anti-microbial effect.

Keywords

Myrtus nivellei Batt & Trab in situ in vitro Methanolic extracts Anti-oxidant Anti-microbial 

Propriétés antioxydantes et antimicrobiennes des extraits de Myrtus nivellei Batt et Trab. obtenus in situ et in vitro

Résumé

Ce travail apporte une contribution à l’investigation et la valorisation d’une plante saharo-endémique: Myrtus nivellei Batt & Trab (Myrtaceae) et l’évaluation du pouvoir antioxydant et antimicrobien de l’extrait méthanolique de cette espèce récoltée in situ ainsi que celui de ses cals multipliés in vitro. Une série d’analyses spectrophotométriques ont été effectuées, montrant que l’extrait méthanolique de la plante récoltée in situ s’est avéré plus riche en polyphénols par rapport à l’extrait des cals multipliés in vitro. Il a éventuellement exprimé un bon pouvoir de capture des radicaux libres (EC50=0,98 mg/ml) et un très bon pouvoir inhibiteur de la peroxydation de l’acide linoléique estimé à 74,01%, qui s’est avéré largement supérieur à celui exprimé par l’acide ascorbique (50,57%) utilisé comme contrôle positif. Néanmoins, les extraits méthanoliques préparés à partir des cals ont exprimé le meilleur pouvoir réducteur du fer estimé à 66,71%. Une très bonne activité antimicrobienne a été enregistrée pour l’extrait de la plante récoltée in situ, particulièrement contre S. aureus (CMI=2,25 mg/ml), ainsi que S. pneumoniae, S. flexineri, S. typhi et C. albicans (CMI=4,5 mg/ml). Cependant, les extraits des cals avaient présenté un effet antimicrobien nul.

Mots clés

Myrtus nivellei Batt & Trab in situ in vitro Extraits méthanoliques Antioxydant Antimicrobien 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Tadhani MB, Patel VH, Subhash R (2007) In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J Food Compos Analysis 20: 323–9CrossRefGoogle Scholar
  2. 2.
    Essawi T, Srour M (2000) Screening of some Palestinian medicinal plants for antibacterial activity. J Ethnopharmacol 70: 343–9CrossRefPubMedGoogle Scholar
  3. 3.
    Ozenda P (1977) Flore du Sahara. Edition CNRS. Paris 623pGoogle Scholar
  4. 4.
    Maka M (2004) Fleurs du Sahara, arbres et arbustes au coeur de leurs usages avec les touareg du Tassili. Phytotherapia 2: 191–7CrossRefGoogle Scholar
  5. 5.
    Quezel P (1954) Contribution à l’étude de la flore et de la végétation du Hoggar. Monographies régionales. Travaux de l’institut de recherches sahariennes. 164pGoogle Scholar
  6. 6.
    Hammiche V, Maiza K (2006) Traditional medicine in central Sahara: Pharmacopoeia of Tassili N’ajjer. J Ethnopharmacol 105: 358–67CrossRefPubMedGoogle Scholar
  7. 7.
    Wichens GE (1998) Ecophisyology of economic plants in arid and semi arid lands. Edition Springer. 343pCrossRefGoogle Scholar
  8. 8.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plants 15: 473–97CrossRefGoogle Scholar
  9. 9.
    William B J (2007) The original of the soxhlet extractor. J Chem Educat 84: 1913–5CrossRefGoogle Scholar
  10. 10.
    Slinkard K, Singleton VL (1977) Total phenol analyses: Automation and comparison with manual methods. Am J Viticult 28: 49–55Google Scholar
  11. 11.
    Park YK, Koo MH, Ikegaki M, et al (1997) Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Brazil Arch Biol Technol 40: 97–106Google Scholar
  12. 12.
    Joslyn MA (1970) A serie of monography. Food. Sci. techn. Second Edition BoardGoogle Scholar
  13. 13.
    Jur P (1967). In: Touaibia M, Chaouch FZ (2014) Composition de l’huile essentielle et des extraits alcooliques de l’espèce saharo-endemique Myrtus nivellei Batt et Trab (Myrtaceae). Bioressources 4:13–20CrossRefGoogle Scholar
  14. 14.
    Cuendet M, Hostettmann K, Potterat O (1997) Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Act 80: 1144–52CrossRefGoogle Scholar
  15. 15.
    Jayaprakasha GK, Singh RP, Sakariah KK (2001) Antioxidant activity of Vitis vinefera extracts on peroxidation modes in vitro. Food Chem 73: 285–90CrossRefGoogle Scholar
  16. 16.
    Oyaizu M (1986) Studies on products of browning reaction- Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307–15CrossRefGoogle Scholar
  17. 17.
    Ponce AG, Fritz R, Delvalle CE, et al (2003) Antimiribial activity of essential oils on native mirobial population of organic Swiss chard, LWT 36: 679–84Google Scholar
  18. 18.
    Senhaji O, Faid M, Elyachioui M, et al (2005) Antifungal activity of different cinnamon extracts. J Med Mycol 15: 220–9CrossRefGoogle Scholar
  19. 19.
    Pousset JL (1989) Plantes médicinales africaines: utilisation pratique. Paris. In: Keita Y, Koné O, Ly AK, Häkkinen V (2004) Étude chimique et de l’activité anti-bactérienne des distillats de quelques variétés de mangue de Guinée. Comptes rendus de chimie. 1: 1095–1100Google Scholar
  20. 20.
    Bahorun T (1997) Substances naturelles actives: La flore mauricienne, une source d’approvisionnement potentielle. Edition Mauritius. 133pGoogle Scholar
  21. 21.
    Shah RR, Mehta AR (1978) Influence of phenolic acids on growth and production of phenolic compounds in Crotalaria callus cultures. Bangl J Bot 7: 51–7Google Scholar
  22. 22.
    Gardeli C, Vassiliki P, Athanasios M, et al. (2008) Essential oil composition of Pistasia lentiscus L. et Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem 107: 1120–30CrossRefGoogle Scholar
  23. 23.
    Ammar H, Lopez S, Gonzalez JS (2005). Assessment of the digestibility of some mediterranean shrubs by in vitro techniques. Anim Feed Sci Technol 119: 323–31CrossRefGoogle Scholar
  24. 24.
    Bakker J, Bridle P, Honda T, et al (1997) Identification of anthocyanin occurring in some red wines. Phytochemistry 4: 145–8Google Scholar
  25. 25.
    Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Food Chemi 49: 2774–9CrossRefGoogle Scholar
  26. 26.
    Banerjee A, Dasgupta N, De B (2005) In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chem 90: 727–33CrossRefGoogle Scholar
  27. 27.
    Thorpe TA, Gasper TH (1978) Changes in isoperoxidases during shoot formation in tobacco callus in vitro. J Physiol 14: 522–6Google Scholar
  28. 28.
    Cook NC, Samman S (1996) Flavonoids Chemistry, Metabolism, Cardioprotectives effects and dietary sources, J Nutr Biochem 7: 66–76CrossRefGoogle Scholar
  29. 29.
    Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships, Free Radic Biol Med 22: 749–60CrossRefPubMedGoogle Scholar
  30. 30.
    Di Carlo G, Mascojo N, Izzo AA, et al (1999) Flavonoids: new aspects of a class of natural therapeutic drugs. Life Sci 65: 337–53CrossRefPubMedGoogle Scholar
  31. 31.
    Kashman Y, Rotstein A, Lifshitz A (1974) The structure determination of two new acylpholoroglucinols from Myrtus communis. Tetrahedron Lett 30: 991–7CrossRefGoogle Scholar
  32. 32.
    Appendino G, Bianchi F, Minassi A, et al (2002) Oligomeric acylphloroglucinols from Myrtus communis. J Natural Prod 65: 334–8CrossRefGoogle Scholar
  33. 33.
    Mansouri S, Foroumadi A, Ghanei T, et al (2001) Anti-bacterial activity of the crude extracts and fractionated constituents of Myrtus communis. Pharmaceut Biol 39: 399–401CrossRefGoogle Scholar
  34. 34.
    Oussou KR, Coffi K, Nathalie G, et al (2004) Activité antibactérienne des huiles essentielles de trios plantes aromatique de la cote d’ivoire. Comptes rendus de chimie 7: 1081–6CrossRefGoogle Scholar
  35. 35.
    Rhayour K, Bouchikhib T, Tantaoui-Elarakic A, et al (2003) The Mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. J Essent Oil Res 15: 286–92CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  1. 1.Département de biologieUniversité Saad DahlebBlidaAlgérie
  2. 2.Département d’agronomieUniversité Saad DahlebBlidaAlgérie

Personalised recommendations