Skip to main content
Log in

Propriétés antioxydantes et antimicrobiennes des extraits de Myrtus nivellei Batt et Trab. obtenus in situ et in vitro

Anti-oxidant and anti-microbial properties of Myrtus nivellei Batt & Trab extracts obtained in situ and in vitro

  • Pharmacognosie
  • Published:
Phytothérapie

Résumé

Ce travail apporte une contribution à l’investigation et la valorisation d’une plante saharo-endémique: Myrtus nivellei Batt & Trab (Myrtaceae) et l’évaluation du pouvoir antioxydant et antimicrobien de l’extrait méthanolique de cette espèce récoltée in situ ainsi que celui de ses cals multipliés in vitro. Une série d’analyses spectrophotométriques ont été effectuées, montrant que l’extrait méthanolique de la plante récoltée in situ s’est avéré plus riche en polyphénols par rapport à l’extrait des cals multipliés in vitro. Il a éventuellement exprimé un bon pouvoir de capture des radicaux libres (EC50=0,98 mg/ml) et un très bon pouvoir inhibiteur de la peroxydation de l’acide linoléique estimé à 74,01%, qui s’est avéré largement supérieur à celui exprimé par l’acide ascorbique (50,57%) utilisé comme contrôle positif. Néanmoins, les extraits méthanoliques préparés à partir des cals ont exprimé le meilleur pouvoir réducteur du fer estimé à 66,71%. Une très bonne activité antimicrobienne a été enregistrée pour l’extrait de la plante récoltée in situ, particulièrement contre S. aureus (CMI=2,25 mg/ml), ainsi que S. pneumoniae, S. flexineri, S. typhi et C. albicans (CMI=4,5 mg/ml). Cependant, les extraits des cals avaient présenté un effet antimicrobien nul.

Abstract

This work provides a contribution to the investigation and valorization of the Sahara-endemic plant: Myrtus nivellei Batt & Trab and the evaluation of the antioxidant effect of methanolic extracts harvested in situ, and in vitro propagated calli of this plant. Several spectrophotometric analyzes were performed, showing that the in situ methanolic extract was richer in polyphenols than the in vitro methanolic extract. Also, It expressed a good power to scavenge free radicals (EC50 = 0.98 mg/ml) and a great capacity to inhibit the peroxidation of linoleic acid estimated as 74.01%, largely higher than the ascorbic acid (50.57%) used as a positif control. However, the methanolic extracts of calli expressed the best ferric reducing power estimated as 66.71%. A very good antimicrobial activity was recorded for the extract of the plant harvested in situ, particularly against S. aureus (MIC=2.25 mg/ml), also against S. pneumoniae, S. flexineri, S. typhi and C. albicans (MIC=4.5 mg/ml). However, the calli extracts had presented no anti-microbial effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Tadhani MB, Patel VH, Subhash R (2007) In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J Food Compos Analysis 20: 323–9

    Article  CAS  Google Scholar 

  2. Essawi T, Srour M (2000) Screening of some Palestinian medicinal plants for antibacterial activity. J Ethnopharmacol 70: 343–9

    Article  CAS  PubMed  Google Scholar 

  3. Ozenda P (1977) Flore du Sahara. Edition CNRS. Paris 623p

    Google Scholar 

  4. Maka M (2004) Fleurs du Sahara, arbres et arbustes au coeur de leurs usages avec les touareg du Tassili. Phytotherapia 2: 191–7

    Article  Google Scholar 

  5. Quezel P (1954) Contribution à l’étude de la flore et de la végétation du Hoggar. Monographies régionales. Travaux de l’institut de recherches sahariennes. 164p

    Google Scholar 

  6. Hammiche V, Maiza K (2006) Traditional medicine in central Sahara: Pharmacopoeia of Tassili N’ajjer. J Ethnopharmacol 105: 358–67

    Article  PubMed  Google Scholar 

  7. Wichens GE (1998) Ecophisyology of economic plants in arid and semi arid lands. Edition Springer. 343p

    Book  Google Scholar 

  8. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plants 15: 473–97

    Article  CAS  Google Scholar 

  9. William B J (2007) The original of the soxhlet extractor. J Chem Educat 84: 1913–5

    Article  Google Scholar 

  10. Slinkard K, Singleton VL (1977) Total phenol analyses: Automation and comparison with manual methods. Am J Viticult 28: 49–55

    CAS  Google Scholar 

  11. Park YK, Koo MH, Ikegaki M, et al (1997) Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Brazil Arch Biol Technol 40: 97–106

    CAS  Google Scholar 

  12. Joslyn MA (1970) A serie of monography. Food. Sci. techn. Second Edition Board

    Google Scholar 

  13. Jur P (1967). In: Touaibia M, Chaouch FZ (2014) Composition de l’huile essentielle et des extraits alcooliques de l’espèce saharo-endemique Myrtus nivellei Batt et Trab (Myrtaceae). Bioressources 4:13–20

    Article  Google Scholar 

  14. Cuendet M, Hostettmann K, Potterat O (1997) Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Act 80: 1144–52

    Article  CAS  Google Scholar 

  15. Jayaprakasha GK, Singh RP, Sakariah KK (2001) Antioxidant activity of Vitis vinefera extracts on peroxidation modes in vitro. Food Chem 73: 285–90

    Article  CAS  Google Scholar 

  16. Oyaizu M (1986) Studies on products of browning reaction- Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307–15

    Article  CAS  Google Scholar 

  17. Ponce AG, Fritz R, Delvalle CE, et al (2003) Antimiribial activity of essential oils on native mirobial population of organic Swiss chard, LWT 36: 679–84

  18. Senhaji O, Faid M, Elyachioui M, et al (2005) Antifungal activity of different cinnamon extracts. J Med Mycol 15: 220–9

    Article  Google Scholar 

  19. Pousset JL (1989) Plantes médicinales africaines: utilisation pratique. Paris. In: Keita Y, Koné O, Ly AK, Häkkinen V (2004) Étude chimique et de l’activité anti-bactérienne des distillats de quelques variétés de mangue de Guinée. Comptes rendus de chimie. 1: 1095–1100

    Google Scholar 

  20. Bahorun T (1997) Substances naturelles actives: La flore mauricienne, une source d’approvisionnement potentielle. Edition Mauritius. 133p

    Google Scholar 

  21. Shah RR, Mehta AR (1978) Influence of phenolic acids on growth and production of phenolic compounds in Crotalaria callus cultures. Bangl J Bot 7: 51–7

    CAS  Google Scholar 

  22. Gardeli C, Vassiliki P, Athanasios M, et al. (2008) Essential oil composition of Pistasia lentiscus L. et Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem 107: 1120–30

    Article  CAS  Google Scholar 

  23. Ammar H, Lopez S, Gonzalez JS (2005). Assessment of the digestibility of some mediterranean shrubs by in vitro techniques. Anim Feed Sci Technol 119: 323–31

    Article  Google Scholar 

  24. Bakker J, Bridle P, Honda T, et al (1997) Identification of anthocyanin occurring in some red wines. Phytochemistry 4: 145–8

    Google Scholar 

  25. Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Food Chemi 49: 2774–9

    Article  CAS  Google Scholar 

  26. Banerjee A, Dasgupta N, De B (2005) In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chem 90: 727–33

    Article  CAS  Google Scholar 

  27. Thorpe TA, Gasper TH (1978) Changes in isoperoxidases during shoot formation in tobacco callus in vitro. J Physiol 14: 522–6

    CAS  Google Scholar 

  28. Cook NC, Samman S (1996) Flavonoids Chemistry, Metabolism, Cardioprotectives effects and dietary sources, J Nutr Biochem 7: 66–76

    Article  CAS  Google Scholar 

  29. Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships, Free Radic Biol Med 22: 749–60

    Article  CAS  PubMed  Google Scholar 

  30. Di Carlo G, Mascojo N, Izzo AA, et al (1999) Flavonoids: new aspects of a class of natural therapeutic drugs. Life Sci 65: 337–53

    Article  PubMed  Google Scholar 

  31. Kashman Y, Rotstein A, Lifshitz A (1974) The structure determination of two new acylpholoroglucinols from Myrtus communis. Tetrahedron Lett 30: 991–7

    Article  CAS  Google Scholar 

  32. Appendino G, Bianchi F, Minassi A, et al (2002) Oligomeric acylphloroglucinols from Myrtus communis. J Natural Prod 65: 334–8

    Article  CAS  Google Scholar 

  33. Mansouri S, Foroumadi A, Ghanei T, et al (2001) Anti-bacterial activity of the crude extracts and fractionated constituents of Myrtus communis. Pharmaceut Biol 39: 399–401

    Article  Google Scholar 

  34. Oussou KR, Coffi K, Nathalie G, et al (2004) Activité antibactérienne des huiles essentielles de trios plantes aromatique de la cote d’ivoire. Comptes rendus de chimie 7: 1081–6

    Article  CAS  Google Scholar 

  35. Rhayour K, Bouchikhib T, Tantaoui-Elarakic A, et al (2003) The Mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. J Essent Oil Res 15: 286–92

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Touaibia.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touaibia, M., Chaouch, F.Z. Propriétés antioxydantes et antimicrobiennes des extraits de Myrtus nivellei Batt et Trab. obtenus in situ et in vitro . Phytothérapie 15, 16–22 (2017). https://doi.org/10.1007/s10298-015-1011-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-015-1011-6

Mots clés

Keywords

Navigation