Skip to main content
Log in

Étude ethnobotanique, biologique et chimique de plantes réputées anticariogènes à Lubumbashi – RD Congo

Ethnobotany, biological and chemical study of plants used as anti-cariogenic in Lubumbashi – RD Congo

  • Ethnopharmacologie
  • Published:
Phytothérapie

Résumé

Une étude ethnobotanique, biologique et chimique a été effectuée à Lubumbashi de mars à juin 2013 en vue de recenser des plantes réputées anticariogènes, évaluer leur activité antibactérienne et y rechercher des substances bioactives. 33 personnes ressources (âge moyen 47,3 [extrêmes: 31-66] ans) ont permis de recenser 14 plantes appartenant à 11 familles dominées par les Fabaceae (21,4 %). Des diverses parties employées, les racines et les feuilles sont les plus fréquentes (28,6 %). Le bain de bouche à 51,1% est le plus sollicité des modes d’administration. Ces plantes sont aussi utilisées pour 15 autres fins thérapeutiques. Les extraits des feuilles d’Anisophyllea pomifera ont présenté l’activité la plus intéressante (CMI: 31,25 μg/ml; CMB: 62,5 μg/ml) sur Streptococcus mutans et sur Lactobacillus acidophillus (CMI: 62,5 μg/ml; CMB: 125 μg/ml). Des alcaloïdes, des saponines, des stéroïdes et des tannins ont été identifiés dans la même plante. Ces résultats pourraient justifier certains usages traditionnels d’A. pomifera et suscitent la poursuite des travaux en vue de l’isolement des molécules bioactives.

Abstract

In order to inventory, evaluate the antibacterial activity, search bioactive compounds of plants used against cariogenic bacteria, an ethnobotanical, biological and chemical study was undertaken in Lubumbashi from March to Jun 2013. Ethnobotanical data were collected by interview using a pre-composed questionnaire. 33 persons aged about 47.3 (age range: 31-66) allowed to gather information on 14 plants species used against cariogenic bacteria and belongs to 11 botanical families where Fabaceae were the most representative (21.4%). Roots and leaves are the most frequents used parties of these herbs (28.6%). The mouthwash (51.1%) remains the main administration route of traditional medications against cariogenic bacteria. The inventoried plants are also used for the treatment of other 15 ailments. Anisophyllea pomifera leaves extract exhibited the most antibacterial activity (MIC: 31.25 μg/mL; MBC: 62.5 μg/mL) on Streptococcus mutans and Lactobacillus acidophillus (MIC: 62.5 μg/mL; MBC: 125 μg/mL). Alkaloids, saponins, steroids and tannins were identified in studied plants. The results of Anisophyllea pomifera would vouch for the use of this plant in traditional medicine, and encourage to bring its investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Fejerskov O (2004) Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res 38: 182–91

    Article  CAS  PubMed  Google Scholar 

  2. Sixou JL, Bailleul-Forestier I, Dajean-Trutaud S, et al. (2004) Recommandations sur la prescription des fluorures de la naissance à l’adolescence. J. Odont Stomatol Pediatr 11: 157–68

    Google Scholar 

  3. OMS (2012) Santé bucco-dentaire. Aide-mémoire n°318. Disponible sur http://www.who.int /mediacentr /factsheets/fs318/fr/

    Google Scholar 

  4. WHO (2003) Rapport sur la santé buccodentaire dans le monde. Disponible sur http://whqlibdoc.who.int /hq/2003/WHO_NMH_ NPH_ORH_03.2_fre.pdf

    Google Scholar 

  5. Diombana ML, Haidara OD, Küssner H, et al. (1998) Etude épidémiologique de la carie dentaire en milieu scolaire à Kati (Bilan Cao, Co et Fréquence Globale). Méd Afr Noire 45: 47–50

    Google Scholar 

  6. Järvinen H, Tenovuo J, Huovinen P (1993) In vitro susceptibility of Streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother 37: 1158–9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kubo I, Muroi H, Himejima M (1993) Antibacterial activity against Streptococcus mutans of mate tea flavor components. J Agric Food Chem 41: 107–11

    Article  CAS  Google Scholar 

  8. Park KM, You JS, Lee HY, et al (2003) An antibacterial agent from the root bark of Morus alba against oral pathogens. J Ethnopharmacol 84: 181–5

    Article  CAS  PubMed  Google Scholar 

  9. Chung JY, Choo JH, Lee MH, et al (2006) Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 13: 261–6

    Article  CAS  PubMed  Google Scholar 

  10. Gomashe AV, Sharma AA, Kasulkar A (2014) Investigation of biofilm inhibition activity and antibacterial activity of Psydium guajava plant extracts against Streptococcus mutans causing dental plaque. Internat J Curr Microbiol Appl Sci 3: 335–51

    Google Scholar 

  11. Kelmanson JE, Jäger AK, Van Staden J (2000) Zulu medicinal plants with antibacterial activity. J Ethnopharmacol 69: 241–6

    Article  CAS  PubMed  Google Scholar 

  12. Smullen J, Koutsou GA, Foster HA, et al. (2007) The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res 41: 342–9

    Article  CAS  PubMed  Google Scholar 

  13. Jabashree HS, Kingsley SJ, Sathish ES, et al. (2011) Antimicrobial activity of few medicinal plants against clinically isolated human cariogenic pathogens-an in vitro study. ISRN Dent 2011: 541421. doi:10.5402/2011/541421

    Google Scholar 

  14. Chaiya A, Saraya S, Chuakul W, et al. (2013) Screening for Dental Caries: Preventive Activities of Medicinal Plants against Streptococcus mutans. Mahindol University. J Pharmaceut Sci 40: 9–17

    Google Scholar 

  15. Fine DH, Furgang D, Barnett ML, et al. (2000) Effect of an essential oil-containing antiseptic mouthrinse on plaque and salivary Streptococcus mutans levels. J Clin Periodontol 27: 157–61

    Article  CAS  PubMed  Google Scholar 

  16. Ishnava KB, Chauhan JB, Garg AA, et al. (2012) Antibacterial and phytochemical studies on Calotropis gigantia (L.) R. Br. Latex against selected cariogenic bacteria. Saudi J Biol Sci 19: 87–91

    Article  PubMed  Google Scholar 

  17. Hamada S, Slade HD (1980) Biology immunology and cariogenicity of Streptococcus mutans. Microbiol Res 44: 331–84

    CAS  Google Scholar 

  18. Dzoyem JP, Guru SK, Pieme CA, et al. (2013) Cytotoxic and antimicrobial activity of selected Cameroonian edible plants. BMC Complement Alternat Med 13: 78.doi:10.1186/1472-6882-13-78

    Article  Google Scholar 

  19. Perilla MJ (2003) Manual for the Laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in this Developing World. Georgia, USA, WHO, pp. 209–14

    Google Scholar 

  20. Hosgor LM, Ermertcan S, Eraç B, et al. (2011) An investigation of the antimicrobial impact of drug combinations against Mycobacterium tuberculosis strains. Turk J Med Sci 41: 719–24

    Google Scholar 

  21. Kaya O, Akçam F, Yayli G (2012) Investigation of the in vitro activities of various antibiotics against Brucella melitensis strains. Turk J Med Sci 42: 145–8

    CAS  Google Scholar 

  22. Biviti LF, Meko’o DJL, Tamze V, et al. (2012) Anticariogenic Activity of Lagerstroemia speciosa (L.). Sci Technol Arts Res J 11: 53–6

    Google Scholar 

  23. Longanga O, Vercruysse A, Foriers A (2000) Contribution to the ethno botanical, phytochemical and pharmacological studies of traditionally used medicinal plants in the treatment of dysentery and diarrhoea in Lomela area, Democratic Republic of Congo (DRC). J Ethnopharmacol 71: 411–23

    Article  Google Scholar 

  24. Dohou N, Yamni K, Tahrouch S, et al. (2003) Screening phytochimique d’une endémique ibéro-marocaine, Thymelaea lythroides. Bull Soc Pharm 142: 61–78

    Google Scholar 

  25. Prashant T, Bimlesh K, Mandeep K, et al. (2011) Phytochemical screening and Extraction: A Review. Internationale Pharmaceutica Sciencia 1: 98–106

    Google Scholar 

  26. Deshpande SN, Kadam DG (2013) Phytochemical analysis and antibacterial activity of Acacia nilotica against streptococcus mutans. Internat J Pharm Pharmaceut Sci 5: 236–8

    Google Scholar 

  27. Muya K, Tshoto K, Cioci CC, et al. (2014) Survol ethnobotanique de quelques plantes utilisées contre la schistosomiase urogénitale à Lubumbashi et environs. Phytothérapie 12: 213–28

    Article  Google Scholar 

  28. Petit P, Mutete S, Kasandji A, et al. (2004) Apprentissage et transmission. Dans: Bunganga ya mici. Guérisseurs et plantes médicinales à Lubumbashi. Rapport de recherche effectué durant la deuxième session des travaux de l’observatoire octobre 2003-mars 2004. OCU-CUD. Vwakyanakazi M et Petit P (éditeurs). Lubumbashi, pp 33–62

    Google Scholar 

  29. Kambizi L, Afolayan AJ (2001) An ethnobotanical study of plants used for the treatment of sexually transmitted dideases (njovhera) in Guruve district. Zimbabwe. J Ethnopharmacol 77: 5–9

    Article  CAS  PubMed  Google Scholar 

  30. York T, De Wet H, Van Vuurenb SF (2011) Plants used for treating respiratory infections in rural Maputaland, KwaZulu-Natal, South Africa. J Ethno Pharmacol 135: 696–710

    Article  CAS  Google Scholar 

  31. Ssegawa P, Kasenene JM (2007) Medicinal plant diversity and uses in the Sango bay area Southern Uganda. J Ethnopharmacol 113: 521–40

    Article  PubMed  Google Scholar 

  32. Giday M, Asfaw Z, Elmqvist T, et al. (2003) An ethno botanical study of medicinal plants used by the Zay people in Ethiopia. J. Ethnopharmacol 85: 43–52

    Article  PubMed  Google Scholar 

  33. Ibara JR, Elion-itou RDG, Etou-ossebi JM, et al. (2007) Enquête ethnobotanique à propos de plantes médicinales congolaises présumées anti-ulcereuses 5: 118–20

  34. Kuete V (2010) Potential of Cameroonian plants and derivedproducts against microbial infections: A review. Planta Med 76: 1479–91

    Article  CAS  PubMed  Google Scholar 

  35. Rampadarath D, Puchooa D, Ranghoo-sanmukhiya M (2014) A comparison of polyphenolic content antioxidant activity and insecticidal properties of Jatropha species and wild Ricinus communis L found in Mauritius. As Pac J Trop Med 7s1: s 384–90. Doi: 10.1016/51995-7645(14)

    Article  Google Scholar 

  36. Costa HP, Oliveira JT, Sonsa DO, et al. (2014) Jc TI-I: a novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment. Front Microbiol DOI: 10.3389/fmicb 1201400005

    Google Scholar 

  37. Oskoueian E, Abdullah N, Ahmed S, et al. (2011) Bioactive compounds and biological activities of Jatropha curcas L. kernel meal extract. Int J Mol Sci 12: 5955–70

    Article  CAS  PubMed  Google Scholar 

  38. Dada ED, Ekundayo FO, Makunjuola OO (2014) Antibacterial activies of Jatropha curcas (L) on coliforms isolated from surface waters in akure, Nigeria. Int Biomed Sci 10 (1):25–30

    CAS  Google Scholar 

  39. Manufo-Estrada DM, Segura-campos MR, Chei-Guerroro LA, et al. (2013) Defatted Jatropha curcas flour and protein isolate as materials for protein hydrolusates with biological activity. Food Chem 138: 77–83

    Article  Google Scholar 

  40. Han C, Chen G, Song X, et al. (2012) A new asymetric diamide from the seed cake of Jatropha curcas L. Fitotherapia 83: 1318–21

    Article  Google Scholar 

  41. Begum S, Wahab A Siddiqui BS (2008) Antimycobactérial activity of flavonoids from Lantana Camara L. Nat Prod Res 22: 467–70

    Article  CAS  PubMed  Google Scholar 

  42. Barre JT, Bwden BF, Coll JC, et al. (1997) A bioactive triterpene from Lantana camara L. Phytochemistry 45: 321–4

    Article  CAS  PubMed  Google Scholar 

  43. Begum S, Zehra SQ, Siddiqui BS, et al. (2008b) Pentacyclic triterpenoids from the aerial part of Lantana camara and their nematicidal activity. Chim Biodivers 5: 1856–66

    Article  CAS  Google Scholar 

  44. Pradeep BV, Pardhu G, Shylaja S, et al. (2013) Phytochemical screening and antimicrobial activities of plant’s extract of Lantana camara L. J Environ Biol 34 (3):645–9

    CAS  PubMed  Google Scholar 

  45. Manzoor M, Anwar F, Sultana B, et al. (2013) Variation in antioxidant and antimicrobial activities in Lantana camara L., flowers in relation to extraction methods. Acta sci Pol Technol Alim 12: 283-94

    CAS  Google Scholar 

  46. Ghosh S, Das SM, Patra A, et al. (2010) Anti-inflammatory and anticancer compounds isolated from Ventilago madraspatana Gaertn, Rubia cordifolia L and Lantana camara L. J Pharm Pharmacol l 62: 1158–66

    Article  CAS  Google Scholar 

  47. Noumedem JA, Tamokou JD, Teke GN, et al. (2013) Phytochemical analysis antimicrobial and radical-scavenging properties of Acalypha mannaniana leaves. Springer plus 2: 503; doi: 10.1186/213-1801-2-503

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brusotti G, Cesari I, Frassà G, et al. (2011) Antimicrobial properties of stem bark extracts from Phyllanthus muellerianius (Kuntze) Excell. J Ethnopharmacol 135: 797–800

    Article  CAS  PubMed  Google Scholar 

  49. Brusotti G, Cesari I, Gilardoni G, et al. (2012) Chemical composition and antimicrobial activity of Phyllanthus muellerianus (Kuntze) Excel essential oil. J Ethnopharmacol 142: 657–62

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bashige-Chiribagula.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashige-Chiribagula, V., Manya-Mboni, H., Ntabaza-Ndage, V. et al. Étude ethnobotanique, biologique et chimique de plantes réputées anticariogènes à Lubumbashi – RD Congo. Phytothérapie 15, 2–9 (2017). https://doi.org/10.1007/s10298-015-1004-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-015-1004-5

Mots clés

Keywords

Navigation