Phytothérapie

, Volume 15, Issue 1, pp 2–9 | Cite as

Étude ethnobotanique, biologique et chimique de plantes réputées anticariogènes à Lubumbashi – RD Congo

  • V. Bashige-Chiribagula
  • H. Manya-Mboni
  • V. Ntabaza-Ndage
  • E. Numbi Ilunga
  • S. Bakari-Amuri
  • E. Kalonda Mutombo
  • J. Kahumba-Byanga
  • P. Okusa-Ndjolo
  • P. Duez
  • J. B. Lumbu-Simbi
Ethnopharmacologie
  • 83 Downloads

Résumé

Une étude ethnobotanique, biologique et chimique a été effectuée à Lubumbashi de mars à juin 2013 en vue de recenser des plantes réputées anticariogènes, évaluer leur activité antibactérienne et y rechercher des substances bioactives. 33 personnes ressources (âge moyen 47,3 [extrêmes: 31-66] ans) ont permis de recenser 14 plantes appartenant à 11 familles dominées par les Fabaceae (21,4 %). Des diverses parties employées, les racines et les feuilles sont les plus fréquentes (28,6 %). Le bain de bouche à 51,1% est le plus sollicité des modes d’administration. Ces plantes sont aussi utilisées pour 15 autres fins thérapeutiques. Les extraits des feuilles d’Anisophyllea pomifera ont présenté l’activité la plus intéressante (CMI: 31,25 μg/ml; CMB: 62,5 μg/ml) sur Streptococcus mutans et sur Lactobacillus acidophillus (CMI: 62,5 μg/ml; CMB: 125 μg/ml). Des alcaloïdes, des saponines, des stéroïdes et des tannins ont été identifiés dans la même plante. Ces résultats pourraient justifier certains usages traditionnels d’A. pomifera et suscitent la poursuite des travaux en vue de l’isolement des molécules bioactives.

Mots clés

Anisophyllea pomifera Activité anticariogene Lactobacillus acidophilus Streptococcus mutans Lubumbashi 

Ethnobotany, biological and chemical study of plants used as anti-cariogenic in Lubumbashi – RD Congo

Abstract

In order to inventory, evaluate the antibacterial activity, search bioactive compounds of plants used against cariogenic bacteria, an ethnobotanical, biological and chemical study was undertaken in Lubumbashi from March to Jun 2013. Ethnobotanical data were collected by interview using a pre-composed questionnaire. 33 persons aged about 47.3 (age range: 31-66) allowed to gather information on 14 plants species used against cariogenic bacteria and belongs to 11 botanical families where Fabaceae were the most representative (21.4%). Roots and leaves are the most frequents used parties of these herbs (28.6%). The mouthwash (51.1%) remains the main administration route of traditional medications against cariogenic bacteria. The inventoried plants are also used for the treatment of other 15 ailments. Anisophyllea pomifera leaves extract exhibited the most antibacterial activity (MIC: 31.25 μg/mL; MBC: 62.5 μg/mL) on Streptococcus mutans and Lactobacillus acidophillus (MIC: 62.5 μg/mL; MBC: 125 μg/mL). Alkaloids, saponins, steroids and tannins were identified in studied plants. The results of Anisophyllea pomifera would vouch for the use of this plant in traditional medicine, and encourage to bring its investigation.

Keywords

Anisophyllea pomifera Anti cariogènic activity Lactobacillus acidophilus Streptococcus mutans Lubumbashi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Fejerskov O (2004) Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res 38: 182–91CrossRefPubMedGoogle Scholar
  2. 2.
    Sixou JL, Bailleul-Forestier I, Dajean-Trutaud S, et al. (2004) Recommandations sur la prescription des fluorures de la naissance à l’adolescence. J. Odont Stomatol Pediatr 11: 157–68Google Scholar
  3. 3.
    OMS (2012) Santé bucco-dentaire. Aide-mémoire n°318. Disponible sur http://www.who.int /mediacentr /factsheets/fs318/fr/Google Scholar
  4. 4.
    WHO (2003) Rapport sur la santé buccodentaire dans le monde. Disponible sur http://whqlibdoc.who.int /hq/2003/WHO_NMH_ NPH_ORH_03.2_fre.pdfGoogle Scholar
  5. 5.
    Diombana ML, Haidara OD, Küssner H, et al. (1998) Etude épidémiologique de la carie dentaire en milieu scolaire à Kati (Bilan Cao, Co et Fréquence Globale). Méd Afr Noire 45: 47–50Google Scholar
  6. 6.
    Järvinen H, Tenovuo J, Huovinen P (1993) In vitro susceptibility of Streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother 37: 1158–9CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kubo I, Muroi H, Himejima M (1993) Antibacterial activity against Streptococcus mutans of mate tea flavor components. J Agric Food Chem 41: 107–11CrossRefGoogle Scholar
  8. 8.
    Park KM, You JS, Lee HY, et al (2003) An antibacterial agent from the root bark of Morus alba against oral pathogens. J Ethnopharmacol 84: 181–5CrossRefPubMedGoogle Scholar
  9. 9.
    Chung JY, Choo JH, Lee MH, et al (2006) Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 13: 261–6CrossRefPubMedGoogle Scholar
  10. 10.
    Gomashe AV, Sharma AA, Kasulkar A (2014) Investigation of biofilm inhibition activity and antibacterial activity of Psydium guajava plant extracts against Streptococcus mutans causing dental plaque. Internat J Curr Microbiol Appl Sci 3: 335–51Google Scholar
  11. 11.
    Kelmanson JE, Jäger AK, Van Staden J (2000) Zulu medicinal plants with antibacterial activity. J Ethnopharmacol 69: 241–6CrossRefPubMedGoogle Scholar
  12. 12.
    Smullen J, Koutsou GA, Foster HA, et al. (2007) The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res 41: 342–9CrossRefPubMedGoogle Scholar
  13. 13.
    Jabashree HS, Kingsley SJ, Sathish ES, et al. (2011) Antimicrobial activity of few medicinal plants against clinically isolated human cariogenic pathogens-an in vitro study. ISRN Dent 2011: 541421. doi:10.5402/2011/541421Google Scholar
  14. 14.
    Chaiya A, Saraya S, Chuakul W, et al. (2013) Screening for Dental Caries: Preventive Activities of Medicinal Plants against Streptococcus mutans. Mahindol University. J Pharmaceut Sci 40: 9–17Google Scholar
  15. 15.
    Fine DH, Furgang D, Barnett ML, et al. (2000) Effect of an essential oil-containing antiseptic mouthrinse on plaque and salivary Streptococcus mutans levels. J Clin Periodontol 27: 157–61CrossRefPubMedGoogle Scholar
  16. 16.
    Ishnava KB, Chauhan JB, Garg AA, et al. (2012) Antibacterial and phytochemical studies on Calotropis gigantia (L.) R. Br. Latex against selected cariogenic bacteria. Saudi J Biol Sci 19: 87–91CrossRefPubMedGoogle Scholar
  17. 17.
    Hamada S, Slade HD (1980) Biology immunology and cariogenicity of Streptococcus mutans. Microbiol Res 44: 331–84Google Scholar
  18. 18.
    Dzoyem JP, Guru SK, Pieme CA, et al. (2013) Cytotoxic and antimicrobial activity of selected Cameroonian edible plants. BMC Complement Alternat Med 13: 78.doi:10.1186/1472-6882-13-78CrossRefGoogle Scholar
  19. 19.
    Perilla MJ (2003) Manual for the Laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in this Developing World. Georgia, USA, WHO, pp. 209–14Google Scholar
  20. 20.
    Hosgor LM, Ermertcan S, Eraç B, et al. (2011) An investigation of the antimicrobial impact of drug combinations against Mycobacterium tuberculosis strains. Turk J Med Sci 41: 719–24Google Scholar
  21. 21.
    Kaya O, Akçam F, Yayli G (2012) Investigation of the in vitro activities of various antibiotics against Brucella melitensis strains. Turk J Med Sci 42: 145–8Google Scholar
  22. 22.
    Biviti LF, Meko’o DJL, Tamze V, et al. (2012) Anticariogenic Activity of Lagerstroemia speciosa (L.). Sci Technol Arts Res J 11: 53–6Google Scholar
  23. 23.
    Longanga O, Vercruysse A, Foriers A (2000) Contribution to the ethno botanical, phytochemical and pharmacological studies of traditionally used medicinal plants in the treatment of dysentery and diarrhoea in Lomela area, Democratic Republic of Congo (DRC). J Ethnopharmacol 71: 411–23CrossRefGoogle Scholar
  24. 24.
    Dohou N, Yamni K, Tahrouch S, et al. (2003) Screening phytochimique d’une endémique ibéro-marocaine, Thymelaea lythroides. Bull Soc Pharm 142: 61–78Google Scholar
  25. 25.
    Prashant T, Bimlesh K, Mandeep K, et al. (2011) Phytochemical screening and Extraction: A Review. Internationale Pharmaceutica Sciencia 1: 98–106Google Scholar
  26. 26.
    Deshpande SN, Kadam DG (2013) Phytochemical analysis and antibacterial activity of Acacia nilotica against streptococcus mutans. Internat J Pharm Pharmaceut Sci 5: 236–8Google Scholar
  27. 27.
    Muya K, Tshoto K, Cioci CC, et al. (2014) Survol ethnobotanique de quelques plantes utilisées contre la schistosomiase urogénitale à Lubumbashi et environs. Phytothérapie 12: 213–28CrossRefGoogle Scholar
  28. 28.
    Petit P, Mutete S, Kasandji A, et al. (2004) Apprentissage et transmission. Dans: Bunganga ya mici. Guérisseurs et plantes médicinales à Lubumbashi. Rapport de recherche effectué durant la deuxième session des travaux de l’observatoire octobre 2003-mars 2004. OCU-CUD. Vwakyanakazi M et Petit P (éditeurs). Lubumbashi, pp 33–62Google Scholar
  29. 29.
    Kambizi L, Afolayan AJ (2001) An ethnobotanical study of plants used for the treatment of sexually transmitted dideases (njovhera) in Guruve district. Zimbabwe. J Ethnopharmacol 77: 5–9CrossRefPubMedGoogle Scholar
  30. 30.
    York T, De Wet H, Van Vuurenb SF (2011) Plants used for treating respiratory infections in rural Maputaland, KwaZulu-Natal, South Africa. J Ethno Pharmacol 135: 696–710CrossRefGoogle Scholar
  31. 31.
    Ssegawa P, Kasenene JM (2007) Medicinal plant diversity and uses in the Sango bay area Southern Uganda. J Ethnopharmacol 113: 521–40CrossRefPubMedGoogle Scholar
  32. 32.
    Giday M, Asfaw Z, Elmqvist T, et al. (2003) An ethno botanical study of medicinal plants used by the Zay people in Ethiopia. J. Ethnopharmacol 85: 43–52CrossRefPubMedGoogle Scholar
  33. 33.
    Ibara JR, Elion-itou RDG, Etou-ossebi JM, et al. (2007) Enquête ethnobotanique à propos de plantes médicinales congolaises présumées anti-ulcereuses 5: 118–20Google Scholar
  34. 34.
    Kuete V (2010) Potential of Cameroonian plants and derivedproducts against microbial infections: A review. Planta Med 76: 1479–91CrossRefPubMedGoogle Scholar
  35. 35.
    Rampadarath D, Puchooa D, Ranghoo-sanmukhiya M (2014) A comparison of polyphenolic content antioxidant activity and insecticidal properties of Jatropha species and wild Ricinus communis L found in Mauritius. As Pac J Trop Med 7s1: s 384–90. Doi: 10.1016/51995-7645(14)CrossRefGoogle Scholar
  36. 36.
    Costa HP, Oliveira JT, Sonsa DO, et al. (2014) Jc TI-I: a novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment. Front Microbiol DOI: 10.3389/fmicb 1201400005Google Scholar
  37. 37.
    Oskoueian E, Abdullah N, Ahmed S, et al. (2011) Bioactive compounds and biological activities of Jatropha curcas L. kernel meal extract. Int J Mol Sci 12: 5955–70CrossRefPubMedGoogle Scholar
  38. 38.
    Dada ED, Ekundayo FO, Makunjuola OO (2014) Antibacterial activies of Jatropha curcas (L) on coliforms isolated from surface waters in akure, Nigeria. Int Biomed Sci 10 (1):25–30Google Scholar
  39. 39.
    Manufo-Estrada DM, Segura-campos MR, Chei-Guerroro LA, et al. (2013) Defatted Jatropha curcas flour and protein isolate as materials for protein hydrolusates with biological activity. Food Chem 138: 77–83CrossRefGoogle Scholar
  40. 40.
    Han C, Chen G, Song X, et al. (2012) A new asymetric diamide from the seed cake of Jatropha curcas L. Fitotherapia 83: 1318–21CrossRefGoogle Scholar
  41. 41.
    Begum S, Wahab A Siddiqui BS (2008) Antimycobactérial activity of flavonoids from Lantana Camara L. Nat Prod Res 22: 467–70CrossRefPubMedGoogle Scholar
  42. 42.
    Barre JT, Bwden BF, Coll JC, et al. (1997) A bioactive triterpene from Lantana camara L. Phytochemistry 45: 321–4CrossRefPubMedGoogle Scholar
  43. 43.
    Begum S, Zehra SQ, Siddiqui BS, et al. (2008b) Pentacyclic triterpenoids from the aerial part of Lantana camara and their nematicidal activity. Chim Biodivers 5: 1856–66CrossRefGoogle Scholar
  44. 44.
    Pradeep BV, Pardhu G, Shylaja S, et al. (2013) Phytochemical screening and antimicrobial activities of plant’s extract of Lantana camara L. J Environ Biol 34 (3):645–9PubMedGoogle Scholar
  45. 45.
    Manzoor M, Anwar F, Sultana B, et al. (2013) Variation in antioxidant and antimicrobial activities in Lantana camara L., flowers in relation to extraction methods. Acta sci Pol Technol Alim 12: 283-94Google Scholar
  46. 46.
    Ghosh S, Das SM, Patra A, et al. (2010) Anti-inflammatory and anticancer compounds isolated from Ventilago madraspatana Gaertn, Rubia cordifolia L and Lantana camara L. J Pharm Pharmacol l 62: 1158–66CrossRefGoogle Scholar
  47. 47.
    Noumedem JA, Tamokou JD, Teke GN, et al. (2013) Phytochemical analysis antimicrobial and radical-scavenging properties of Acalypha mannaniana leaves. Springer plus 2: 503; doi: 10.1186/213-1801-2-503CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Brusotti G, Cesari I, Frassà G, et al. (2011) Antimicrobial properties of stem bark extracts from Phyllanthus muellerianius (Kuntze) Excell. J Ethnopharmacol 135: 797–800CrossRefPubMedGoogle Scholar
  49. 49.
    Brusotti G, Cesari I, Gilardoni G, et al. (2012) Chemical composition and antimicrobial activity of Phyllanthus muellerianus (Kuntze) Excel essential oil. J Ethnopharmacol 142: 657–62CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  • V. Bashige-Chiribagula
    • 1
    • 2
    • 3
  • H. Manya-Mboni
    • 1
  • V. Ntabaza-Ndage
    • 1
  • E. Numbi Ilunga
    • 1
    • 2
  • S. Bakari-Amuri
    • 1
    • 2
  • E. Kalonda Mutombo
    • 2
  • J. Kahumba-Byanga
    • 1
  • P. Okusa-Ndjolo
    • 2
  • P. Duez
    • 2
  • J. B. Lumbu-Simbi
    • 3
  1. 1.Laboratoire de PharmacognosieFaculté des Sciences Pharmaceutiques Université de LubumbashiLubumbashiDemocratic Republic of Congo
  2. 2.Laboratoire de Chimie Thérapeutique et Pharmacognosie, Faculté de Médecine et de PharmacieUniversité de Mons (UMONS)MonsBelgique
  3. 3.Laboratoire de chimie OrganiqueFaculté des Sciences Université de LubumbashiCommune de LubumbashiDemocratic Republic of Congo

Personalised recommendations