Skip to main content
Log in

Fiber Bragg gratings for dispersion compensation in optical communication systems

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

Dispersion compensating fibers (DCF) are the most widely used technology for dispersion compensation. A DCF without Raman amplification introduces extra loss in the system, thus increasing the need for gain in the discrete amplifiers and degrading the noise performance. The idea to additionally use the DCF as a Raman gain medium was originally proposed by Hansen et al. in 1998. [1] This was quickly followed by Emori et al., who demonstrated a broadband, loss less DCF using multiple-wavelength Raman pumping. [2] DCF is a good Raman gain medium, due to a relatively high germanium doping level and a small effective area. To get sufficient gain with a reasonable pump power, a discrete Raman amplifier has to contain several kilometers of fiber, adding extra dispersion to the system that must be handled in the overall dispersion management. Dispersion compensating Raman amplifiers integrates two key functions: dispersion compensation and discrete Raman amplification into a single component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P.B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, A.J. Stentz, Raman amplification for loss compensation in dispersion compensating fibre modules, Electron. Lett., 34 (11), 1136-1137 (1998).

    Article  Google Scholar 

  • Y. Emori, Y. Akasaka, S. Namiki, Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes, Electron. Lett., 34 (22), 2145-2146 (1998).

    Article  Google Scholar 

  • T. Tanaka, K. Torii, M. Yuki, H. Nakamoto, T. Naito, I. Yokota, 200-nm bandwidth WDM transmission around 1.55 μm using distributed Raman amplifier, Proceedings of ECOC'02, paper PD4.6, 2002.

  • T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onishi, M. Shigematsu; Raman amplification over 100 nm bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber, Proceedings of OFC'02, paper TuJ7; 2002.

  • L. Gruner-Nielsen, Y. Qian, B. Palsdottir, Y. Qian, P.B. Gaarde, S. Dyrbol, T. Veng, R. Boncek, R. Lingle, Module for simultaneous C+L-band dispersion compensation and Raman amplification, OFC'02, paper TuJ6, 2002.

  • D.A. Chestnut, C.J.S. de Matos, P.C. Reeves-Hall, J. R. Taylor, Co- and counter-propagating second-order-pumped lumped fiber Raman amplifiers, Proceedings of OFC'02, paper ThB2, 2002.

  • J. Bromage, H.J. Thiele, L.E. Nelson, Raman amplification in the S-band, Proceedings of OFC'02, paper ThB3, 2002.

  • Y. Qian, Carsten G. Jorgensen, P. B. Gaarde, B. Palsdottir, B. Edvold, C-band discrete Raman amplification with simultaneous dispersion and dispersion-slope compensation for NZDF, Proceedings of OAA'02, paper OWB2, 2002.

  • A.H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold et al., 2.5 Tb/s (64x42.7 Gb/s) Transmission Over 40 x 100 km NZDSF Using RZ-DPSK Format and all-Raman-Amplified Spans, OFC'02, paper FC2, 2002.

  • B. Zhu, C. Doerr, P. Gaarde, L. E. Nelson, S. Stulz, L. Stulz, L. Gruner-Nielsen, Broad bandwidth seamless transmission of 3.56 Tbit/s over 40 x 100 km of NZDF fibre using CSRZ-DPSK format, Opt. Lett., 39 (21), 1528-1530 (2003).

    Google Scholar 

  • B. Zhu, L. Leng, A.H. Gnauck, M.O. Pedersen, D. Peckham, L.E. Nelson, S. Stulz, S. Kado, L. Gruner-Nielsen, R.L. Lingle, Jr., S. Knudsen, JU. Leuholdt, C. Doerr, S. Chandrasekhar, G. Baynham, P. Gaarde, Y. Emori, S. Namiki, Transmission of 3.2 Tb/s (80 x 42.7 Gbit/s) over 5200 km of UltraWave fiber with 100 km dispersion-managed spans using RZ_DPSK format, Proceedings of ECOC 2001, paper PD4.2, 2002.

  • C. Rasmussen, S. Dey, F. Liu, J. Bennike, B. Mikkelsen, P. Mamyshev, M. Kimmitt, K. Springer, D. Gapontsev, V. Ivshin, Transmission of 40 x 42.7 Gbit/s over 5200 km UltraWave fiber with terrestrial 100 km spans using turn-key ETDM transmitter and receiver, Proceedings of ECOC 2002, paper PD4.4, 2002.

  • D.F. Grosz, A. Agarwal, S. Banerjee, A.P. Kung, D.N. Maywar, A. Gurecich, T.H. Wood, C.R. Lima, B. Faer, J. Black, C. Hwu, 5.12 Tb/s (128 x 42.7 Gb/s) Transmission with 0.8 bit/s/Hz spectral efficinecy over 1280 km of standard single-mode fiber using all-Raman amplification and strong signal filtering, ECOC'02, paper PD4.3, 2002.

  • L.F. Mollenauer, Dispersion managed solitons for ultra long distance, Terabit WDM, Proceedings of OFC'00, Tutorial 5, 2000.

  • P.J. Winzer, K. Sherman, M. Zirngibl, Experimental demonstration of time-division multiplexed Raman pumping, Proceedings of OFC'02, paper WB5, 2002.

  • G. Charlet, W. Idler, R. Dischler, J.-C. Antona, P. Tran, S. Bigo, 3.2 Tbit/s (80'42.7 Gb/s) C-band transmission over 9'100 km of TeraLightTM fiber with 50 GHz channel spacing; Proceedings of OAA'02, PD1, 2002,

  • A.J. Antos, D.K. Smith, Design and Characterization of Dispersion Compensating Fiber Based on the LP01 Mode, J. Lightwave Technol., 12 (10), 1739-1745 (1994).

    Article  ADS  Google Scholar 

  • L. Gruner-Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C.C. Larsen, H. Damsgaard, Dispersion compensating fibers, Opt. Fiber Technol., 6, 164-180 (2000).

    Article  ADS  Google Scholar 

  • T. Kato, Design optimisation of dispersion compensating fiber for NZ-DSF considering nonlinearity and packaging performance, Proceedings of OFC2001, paper TuS6, 2001.

  • M.J. Li, Recent Progress In Fiber Dispersion Compensators; Proceedings of ECOC 2001, paper Th.M.1.1, 2001.

  • M. Wandel, P. Kristensen, T. Veng, Y. Qian, Q. Le, L. Gruner-Nielsen, Dispersion compensating fibers for non-zero dispersion fibers, Technical Digest of OFC'2002 paper WU1, 2002.

  • L. Gruner-Nielsen, B. Edvold, Status and future promises for dispersion-compensating fibers,; Proceedings of ECOC'02, paper 6.1.1, 2002.

  • M. Wandel, T. Veng, Q. Le N.T., L. Gruner-Nielsen, Dispersion compensating fibre with a high figure of merit; Proceedings of ECOC'01, paper PD.A.1.4, 2001.

  • C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni, A.M. Vengsarkar, Optical Fiber-Based Dispersion Compensation Using Higher Order Modes Near Cut-off, J. Lightwave Technol., 12 (10), 1746-1758 (1994).

    Article  ADS  Google Scholar 

  • A.H. Gnauck, L.D. Garrett, Y. Danziger, U. Levy, M. Tur, Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre, Electron. Lett., 36, 1946 (2000).

    Article  Google Scholar 

  • S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, L. Gruner-Nielsen, All-Fiber, Grating-based, Higher-order-mode Dispersion Compensator for Broadband Compensation and 1000-km Transmission at 40-Gb/s, Photon. Technol. Lett., 13 (6), 632-634 (2001).

    Article  Google Scholar 

  • G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, CA, 2001).

  • P. Nouchi, P. Sillard, L.A. de Montmorillon, New transmission fibers for future networks, in Proceedings of ECOC'2004, paper Th3.3.1.

  • L. Nelson, B. Zhu, Raman Amplifiers for Telecommunications. (Springer-Verlag, New York, 2004), chapter 19.

  • R.H. Stolen, E.P. Ippen, A.R. Tynes, Raman gain in glass optical waveguide, Appl. Phys. Lett., 22, 62-64 (1972).

    Article  ADS  Google Scholar 

  • H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, E. Rabarijaona, Pump Interactions in a 100-nm Bandwidth Raman amplifier, IEEE Photon. Technol. Lett., 11, 5 (1999).

    Article  Google Scholar 

  • C.R.S. Fludger, Raman Amplifiers for Telecommunications (Springer-Verlag, New York, 2004), chapter 4.

  • S.T. Davey, D.L. Williams, B.J. Ainslie, W.J.M. Rothwell, B. Wakefield, Optical gain spectrum of GeO_2-SiO_2 Raman fibre amplifiers, IEE Proceedings, 136, Pt. J, 6 (1989).

  • K. Rottwitt, J. Bromage, A.J. Stentz, L. Leng, M. Lines, H. Schmith, Scaling of the Raman gain coefficient: Applications to germanosilicate fibers, J. Lightwave Technol., 21 (7), 1652 (2003).

    Article  ADS  Google Scholar 

  • R.H. Stolen, Raman Amplifiers for Telecommunications (Springer-Verlag, New York, 2004), chapter 2

  • Y. Qian, J.H. Povlsen, S.N. Knudsen, L. Gruner-Nielsen, Fiber Raman amplifications with single-mode fibers, Trends in Optics and Photonics Series TOPS, Vol. 44, pp. 128-134, 2000.

  • P.B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J.J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, Rayleigh scattering limitations in distributed Raman pre-amplifiers, IEEE Photon. Tech. Lett., 10 (1), 159-161 (1998).

    Article  Google Scholar 

  • M. Nissov, K. Rottwitt, H. D. Kidorf, M.X. Ma, Rayleigh crosstalk in long cascadedes of distributed unsaturated Raman amplifiers, Electron. Lett., 35 (12), 997-998 (1999).

    Article  Google Scholar 

  • V.E. Perlin, H. G. Winful, On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification, Proceedings of OFC'02, paper WB1, 2002.

  • A. Artamonov, V. Smokovdin, M. Kleshov, S.A.E. Lewis, S. V. Chernikov, Enhancement of double Rayleigh scattering by pump intensity noise in fiber Raman amplifier, Proceedings of OFC'02, paper WB6, 2002.

  • C.H. Kim, J. Bromage, R.M. Jopson, Reflection-induced penalty in Raman amplified systems, IEEE Photon. Techn. Lett., 14, 4 (2002).

    MATH  Google Scholar 

  • Y. Qian, J.H. Povlsen, S.N. Knudsen, L. Gruner-Nielsen, Fiber Raman amplifications with dispersion compensating fibers, Trends in Optics and Photonics Series TOPS, Vol. 44, pp. 36-43, 2000.

  • P.B. Gaarde, Y. Qian, S. N. Knudsen, B. Palsdottir, Predicting MPI in Raman optical amplifiers by measuring the Rayleigh backscattering coefficient, Proceedings of SOFM'02, 2002.

  • A. Hartog and M. Gold, On the Theory of Backscattering in Single-Mode Optical Fibers, J. Lightwave Technol., LT-2 (2), 76-82 (1984).

    Article  ADS  Google Scholar 

  • A.F. Judy, An OTDR based combined end-reflection and backscatter measurement, SOFM, pp. 19-22, 1992.

  • M. Ohashi, K. Shiraki, K. Tajima, Optical Loss Property of Silca-Based Single-Mode Fibers, J. Lightwave Technol., 10 (5), 539-543 (1992).

    Article  ADS  Google Scholar 

  • S.A.E. Lewis, S.V. Chernikov, J.R. Taylor, Characterization of double Rayleigh scatter noise in Raman amplifiers, IEEE Photon. Technol. Lett., 12, 528-530 (2000).

    Article  Google Scholar 

  • C.R.S. Fludger, R.J. Mears, Electrical measurements of multipath interference in distributed Raman amplifiers, J. Lightwave Technol., 19 (4), 536 (2001).

    Article  ADS  Google Scholar 

  • M.O. van Deventer, Polarization properties of Rayleigh backscattering in single-mode fibers, J. Lightwave Technol., 11, 1895-1899 (1993).

    Article  ADS  Google Scholar 

  • V. Smokovdin, S.A.E. Lewis, S.V. Chernikov, Direct comparison of electrical and optical measurements of double Rayleigh scatter noise, ECOC'02, paper S3.5, 2002.

  • S. Burtsev, W. Pelouch, P. Gavrilovic, Multi-path interference noise in multi-span transmission links using lumped Raman amplifiers, Proceedings of OFC'02, paper TuR4, 2002.

  • J. Bromage, L.E. Nelson, C.H. Kim, P.J. Winzner, F-J. Essiambre, R.M. Jopson, Relative impact of multiple-path interference and amplified spontaneous emission noise on optical receiver performance, Proceedings of OFC'02, paper TuR3, 2002.

  • A. Artamonov, V. Smokovdin, M. Kleshov, S.A.E. Lewis, S.V. Chernikov, Enhancement of double Rayleigh scattering by pump intensity noise in fiber Raman amplifier, Proceedings of OFC'02, paper WB6, 2002.

  • P. Parolari, L. Marazzi, L. Bernardini, M. Martinelli, Double Rayleigh backscatter noise measurements in discrete and distributed Raman amplifiers; Proceedings of OAA'02, paper OWA3, 2002.

  • R. Essiambre, P. Winzer, J. Bromage, C. H. Kim, Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering, IEEE Photon. Technol. Lett., 14 (7), 914-916 (2002).

    Article  Google Scholar 

  • H.J. Thiele, J. Bromage, L. Nielsen, Impact of discrete Raman amplifier architecture on nonlinear impairments, Proceedings of ECOC'02, paper 7.0.2, 2002.

  • A.J. Stenz, S.G. Grubb, C.E. Headley, J.R. Simponson, T. Strasser, N. Park, Raman amplifier with improved system performance, Proc. of OFC'96, paper TuD3, 1996.

  • D. Hamoir, J. Boniort, L. Gasca, D. Bayart, Optimized, two-stage architecture for Raman amplifiers, Proc. of OAA'00, paper OMD8, 2000.

  • T. Tsuzaki, T. Miyamoto, T. Okuno, M. Kakui, M. Hirano, M. Onishi, M. Shigematsu, Impact of double Rayleigh backscattering in discrete fiber Raman amplifiers employing highly nonlinear fiber, Proceedings of OAA'02, paper OWA2, 2002.

  • C.R.S. Fludger, V. Handerek,d R. J. Mears, Pump to signal RIN transfer in Raman fibre amplifiers, J. Lightwave Technol., 19 (8), 1140-1148 (2001).

    Article  ADS  Google Scholar 

  • M.D. Mermelstein, C. Headley, J.-C. Bouteiller, RIN transfer analysis in pump depletion regime for Raman fibre amplifiers, Electron. Lett., 38 (9), 403-405 (2002).

    Article  Google Scholar 

  • Y. Qian, S. Dyrbol, J.S. Andersen, P.B. Gaarde, C.G.Jorgensen, B. Palsdottir, L. Gruner-Nielsen, Bi-directionally pumped discrete Raman amplifier with optimized dispersion compensation for non-shifted transmission fibre, Proceedings of ECOC'02, paper 6.4.1, 2002.

  • S. Kado, Y. Emori, S. Namiki, Gain and noise tilt control in multi-wavelength bi-directionally pumped Raman amplifier, Proceedings of OFC'02, paper TuJ4, 2002.

  • A.F. Evans, J. Grochocinski, A. Rahman, Corey Reynolds, Michael Vasilyev, Distributed Amplification: How Raman gain impacts other fiber nonlinearities, Proceedings of OFC'01, paper MA7, 2001.

  • J. Bromage, P.J. Winzner, L.E. Nelson, C.J. McKinstrie, Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers; Proceedings of OAA'02, paper OWA5, 2002.

  • Q. Le N.T., C.G.Jorgensen, L. G Gruner-Nielsen, B. Palsdottir, Enhancement of Nonlinear response of a highly nonlinear fibre due to Raman amplification, Proceedings of ECOC'02, 2002.

  • T. Okuno, T. Tsuzaki, H. Hirano, T. Miyamoto, M. Kakui, M. Onishi, Y, Nakai, M. Nishimura, Nonlinear-fiber-based discrete Raman amplifier with sufficiently suppressed degradation of WDM signal quality, Proceedings of OAA'1, paper OTuB5, 2001.

  • T. Wang, Y. Cao, J. Luo, Dispersion compensation fiber working in U band, in Proceedings of OFC'2003, Paper MF2.

  • J.U. Jeon, H.K. Seo, Y.T. Lee, Wide-band High Negative Dispersion-Flattened Fiber, in Proceedings of ECOC'2002, Paper P1.35.

  • J. Rathje, M. Andersen, L. Gruner-Nielsen, Dispersion Compensating fiber for identical compensation in the S,C and L band, in Proceedings of OFC'2003, Paper FK6.

  • P. Kristensen, Design of dispersion compensating fiber, in Proceedings of ECOC'2004, Paper 3.3.1.

  • V.M. Schneider, J. A. West, Analysis of wideband dispesion slope compensating optical fibres by supermode theory, Electron. Lett., 38 (7), 306-307 (2002).

    Article  Google Scholar 

  • J.L. Auguste, J.M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, B.P. Pal, Conception, realization, and characterization of a very high negative chromatic dispersion fiber, Opt. Fiber Technol., 8, 89-105 (2002).

    Article  ADS  Google Scholar 

  • S. Ramachandran, J. Nicholson, P. Kristensen, S. Ghalmi and M. Yan, Measurement of multi-path interference in the coherent cross-talk regime, in Procedings of OFC'2003, paper TuK6.

  • M.E. Lines, W.A. Reed, D.J. DiGiovanni, J.R. Hamblin, Explanation of anomalous loss in high delta singlemode fibres, Electron. Lett., 35 (12), 1009-1010 (1999).

    Article  Google Scholar 

  • J. Rathje, L. Gruner-Nielsen, Relationship between Relative Dispersion Slope of a transmission fiber and the usable bandwidth after dispersion compensating, in Proceedings of ECOC'2002, paper P1.23.

  • A. Gorlier, P. Sillard, F. Beaumont, L.-A. de Montmorillon, L. Fleury, Ph. Guenot, A. Bertaina, P. Nouchi, Optimized NZDF-based link for wide-band seamless terrestrial transmissions, in Proceedings of OFC'2002, paper ThGG7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gruner-Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruner-Nielsen, L., Qian, Y. & Gaarde, P. Fiber Bragg gratings for dispersion compensation in optical communication systems. J Optic Comm Rep 3, 61–89 (2006). https://doi.org/10.1007/s10297-005-0060-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-005-0060-2

Keywords

Navigation