Skip to main content
Log in

Sequential improvement of rimocidin production in Streptomyces rimosus M527 by introduction of cumulative drug-resistance mutations

  • Biotechnology Methods - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Rimocidin is a polyene macrolide that exhibits a strong inhibitory activity against a broad range of plant-pathogenic fungi. In this study, fermentation optimization and ribosome engineering technology were employed to enhance rimocidin production in Streptomyces rimosus M527. After the optimization of fermentation, rimocidin production in S. rimosus M527 increased from 0.11 ± 0.01 to 0.23 ± 0.02 g/L during shake-flask experiments and reached 0.41 ± 0.05 g/L using 5-L fermentor. Fermentation optimization was followed by the generation of mutants of S. rimosus M527 through treatment of the strain with different concentrations of gentamycin (Gen) or rifamycin. One Genr mutant named S. rimosus M527-G37 and one Rifr mutant named S. rimosus M527-R5 showed increased rimocidin production. Double-resistant (Genr and Rifr) mutants were selected using S. rimosus M527-G37 and S. rimosus M527-R5, and subsequently tested. One mutant, S. rimosus M527-GR7, which was derived from M527-G37, achieved the greatest cumulative improvement in rimocidin production. In the 5-L fermentor, the maximum rimocidin production achieved by S. rimosus M527-GR7 was 25.36% and 62.89% greater than those achieved by S. rimosus M527-G37 and the wild-type strain S. rimosus M527, respectively. Moreover, in the mutants S. rimosus M527-G37 and S. rimosus M527-GR7 the transcriptional levels of ten genes (rimAsr to rimKsr) located in the gene cluster involved in rimocidin biosynthesis were all higher than those in the parental strain M527 to varying degrees. In addition, after expression of the single rimocidin biosynthetic genes in S. rimosus M527 a few recombinants showed an increase in rimocidin production. Expression of rimE led to the highest production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brautaset T, Sletta H, Degnes KF, Sekurova ON, Bakke I, Volokhan O, Andreassen T, Ellingsen TE, Zotchev SB (2011) New nystatin-related antifungal polyene macrolides with altered polyol region generated via biosynthetic engineering of Streptomyces noursei. Appl Environ Microbiol 77(18):6636–6643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34(2):171–198

    Article  CAS  PubMed  Google Scholar 

  3. Davies C, Bussiere DE, Golden BL, Porter SJ, Ramakrishnan V, White SW (1998) Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance 1. J Mol Biol 279(4):873–888

    Article  CAS  PubMed  Google Scholar 

  4. Escudero L, Al-Refai M, Nieto C, Laatsch H, Malpartida F, Seco EM (2015) New rimocidin/CE-108 derivatives obtained by a crotonyl-CoA carboxylase/reductase gene disruption in Streptomyces diastaticus var. 108: substrates for the polyene carboxamide synthase PcsA. PLoS One 10(8):e0135891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao X, He Q, Jiang Y, Huang L (2016) Optimization of nutrient and fermentation parameters for antifungal activity by Streptomyces lavendulae Xjy and its biocontrol efficacies against Fulvia fulva and Botryosphaeria dothidea. J Phytopathol 164(3):155–165

    Article  CAS  Google Scholar 

  6. Hu HF, Zhang Q (2008) Enhanced antibiotic production by inducing low level of resistance to gentamicin. Chin J of Nat Med 6(2):146–152 (in Chinese)

    Article  CAS  Google Scholar 

  7. Hu H, Zhang Q, Ochi K (2002) Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J Bacteriol 184(14):3984–3991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeon BJ, Kim JD, Han JW, Kim BS (2016) Antifungal activity of rimocidin and a new rimocidin derivative BU16 produced by Streptomyces mauvecolor BU16 and their effects on pepper anthracnose. J Appl Microbiol 120(5):1219–1228

    Article  CAS  PubMed  Google Scholar 

  9. Kemung HM, Tan LT, Khan TM, Chan KG, Pusparajah P, Goh BH, Lee LH (2018) Streptomyces as a prominent resource of future anti-MRSA drugs. Front Microbiol 9:2221

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, Uchida M, Nagamitsu T, Omura S, Ikeda H (2011) Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci USA 108(39):16410–16415

    Article  PubMed  Google Scholar 

  11. Liang W, Chen X, Wu G, Xin Z, Ren X, Shu L, Lei T, Mao Z (2016) Genome shuffling and gentamicin-resistance to improve ε-Poly-l-Lysine productivity of Streptomyces albulus W-156. Appl Biochem Biotechnol 180(8):1601–1617

    Article  CAS  Google Scholar 

  12. Ling L, Jian P, Wang Z, Yan X, Dong Y, Zhu X, Shen B, Duan Y, Yong H (2018) Ribosome engineering and fermentation optimization leads to overproduction of tiancimycin A, a new enediyne natural product from Streptomyces sp. CB03234. J Ind Microbiol Biotechnol 45(3):141–151

    Article  CAS  Google Scholar 

  13. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  14. Lu D, Ma Z, Xu X, Yu X (2016) Isolation and identification of biocontrol agent Streptomyces rimosus M527 against Fusarium oxysporum f. sp. cucumerinum. J Basic Microbiol 56(8):929–933

    Article  CAS  PubMed  Google Scholar 

  15. Lu D, Zhao Y, Ma Z, Zhang Y, Wang J, Yu X (2016) Identification of antifungal compound from Streptomyces rimosus M527 and its application in biocontrol of pathogenic fusarium wilt on cucumber. Chin J Biol Control 32(6):783–787 (In Chinese)

    Google Scholar 

  16. Ma Z, Luo S, Xu X, Bechthold A, Yu X (2016) Characterization of representative rpoB gene mutations leading to a significant change in toyocamycin production of Streptomyces diastatochromogenes1628. J Ind Microbiol Biotechnol 43(4):463–471

    Article  CAS  PubMed  Google Scholar 

  17. Ma Z, Tao L, Bechthold A, Shentu X, Bian Y, Yu X (2014) Overexpression of ribosome recycling factor is responsible for improvement of nucleotide antibiotic-toyocamycin in Streptomyces diastatochromogenes 1628. Appl Microbiol Biotechnol 98(11):5051–5058

    Article  CAS  PubMed  Google Scholar 

  18. Ochi K (2017) Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot 70(1):25–40

    Article  CAS  PubMed  Google Scholar 

  19. Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K (2004) Ribosome engineering and secondary metabolite production. Adv Appl Microbiol 56:155–184

    Article  CAS  PubMed  Google Scholar 

  20. Phornphisutthimas S, Sudtachat N, Bunyoo C, Chotewutmontri P, Panijpan B, Thamchaipenet A (2010) Development of an intergeneric conjugal transfer system for rimocidin-producing Streptomyces rimosus. Lett Appl Microbiol 50(5):530–536

    Article  CAS  PubMed  Google Scholar 

  21. Ren J, Cui Y, Zhang F, Cui H, Ni X, Chen F, Li L, Xia H (2014) Enhancement of nystatin production by redirecting precursor fluxes after disruption of the tetramycin gene from Streptomyces ahygroscopicus. Microbiol Res 169(7–8):602–608

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  23. Seco EM, Pérezzúñiga FJ, Rolón MS, Malpartida F (2004) Starter unit choice determines the production of two tetraene macrolides, rimocidin and CE-108, in Streptomyces diastaticus var. 108. Chem Biol 11(3):357–366

    Article  CAS  PubMed  Google Scholar 

  24. Shentu X, Cao Z, Xiao Y, Tang G, Ochi K, Yu X (2018) Substantial improvement of toyocamycin production in Streptomyces diastatochromogenes by cumulative drug-resistance mutations. PLoS One 13(8):e0203006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178(24):7276–7284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suzuki T, Seta K, Nishikawa C, Hara E, Shigeno T, Nakajimakambe T (2015) Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering. Bioresour Technol 176:156–162

    Article  CAS  PubMed  Google Scholar 

  27. Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K (2003) Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microb 69(11):6412–6417

    Article  CAS  Google Scholar 

  28. Tanaka Y, Izawa M, Hiraga Y, Misaki Y, Watanabe T, Ochi K (2017) Metabolic perturbation to enhance polyketide and nonribosomal peptide antibiotic production using triclosan and ribosome-targeting drugs. Appl Microbiol Biotechnol 101(11):4417–4431

    Article  CAS  PubMed  Google Scholar 

  29. Tong QQ, Zhou YH, Chen XS, Wu JY, Wei P, Yuan LX, Yao JM (2018) Genome shuffling andribosome engineering of Streptomyces virginiae for improved virginiamycin production. Bioprocess Biosyst Eng 41(5):729–738

    Article  CAS  PubMed  Google Scholar 

  30. Viaene T, Langendries S, Beirinckx S, Maes M, Goormachtig S (2016) Streptomyces as a plant’s best friend? FEMS Microbiol Ecol 92(8):fiw119

    Article  CAS  PubMed  Google Scholar 

  31. Wang G, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 74(9):2834–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu J, Tozawa Y, Lai C, Hayashi H, Ochi K (2002) A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Mol Genet Genomics 268(2):179–189

    Article  CAS  PubMed  Google Scholar 

  33. Yao T, Liu Z, Li T, Zhang H, Liu J, Li H, Che Q, Zhu T, Li D, Li W (2018) Characterization of the biosynthetic gene cluster of the polyene macrolide antibiotic reedsmycins from a marine-derived Streptomyces strain. Microb Cell Fact 17(1):98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Z, Zhao X, Bai F (2013) Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 97(10):4361–4368

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, An J, Wang JJ, Yan YJ, He HR, Wang XJ, Xiang WS (2013) Genetic engineering of Streptomyces bingchenggensis to produce milbemycins A3/A4 as main components and eliminate the biosynthesis of nanchangmycin. Appl Microbiol Biotechnol 97(23):10091–10101

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Huang H, Xu S, Wang B, Ju J, Tan H, Li W (2015) Activation and enhancement of Fredericamycin A production in deepsea-derived Streptomyces somaliensis SCSIO ZH66 by using ribosome engineering and response surface methodology. Microb Cell Fact 14:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao Y, Lu D, Bechthold A, Ma Z, Yu X (2018) Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145. J Zhejiang Univ Sci B 19(9):708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu X, Kong J, Yang H, Huang R, Huang Y, Yang D, Shen B, Duan Y (2018) Strain improvement by combined UV mutagenesis and ribosome engineering and subsequent fermentation optimization for enhanced 6′-deoxy-bleomycin Z production. Appl Microbiol Biotechnol 102(4):1651–1661

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31772213), and the excellent youth fund of Zhejiang province, China (LR17C140002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Ma or Xiaoping Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Song, Z., Ma, Z. et al. Sequential improvement of rimocidin production in Streptomyces rimosus M527 by introduction of cumulative drug-resistance mutations. J Ind Microbiol Biotechnol 46, 697–708 (2019). https://doi.org/10.1007/s10295-019-02146-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02146-w

Keywords

Navigation