Advertisement

Metabolic engineering for improving l-tryptophan production in Escherichia coli

  • Hao Niu
  • Ruirui Li
  • Quanfeng Liang
  • Qingsheng Qi
  • Qiang Li
  • Pengfei GuEmail author
Fermentation, Cell Culture and Bioengineering - Mini Review

Abstract

l-Tryptophan is an important aromatic amino acid that is used widely in the food, chemical, and pharmaceutical industries. Compared with the traditional synthetic methods, production of l-tryptophan by microbes is environmentally friendly and has low production costs, and feed stocks are renewable. With the development of metabolic engineering, highly efficient production of l-tryptophan in Escherichia coli has been achieved by eliminating negative regulation factors, improving the intracellular level of precursors, engineering of transport systems and overexpression of rate-limiting enzymes. However, challenges remain for l-tryptophan biosynthesis to be cost-competitive. In this review, successful and applicable strategies derived from metabolic engineering for increasing l-tryptophan accumulation in E. coli are summarized. In addition, perspectives for further efficient production of l-tryptophan are discussed.

Keywords

Escherichia coli Metabolic engineering l-Tryptophan 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31600066, 31100088, and 31600148), the Shandong province science and technology development plan (2013GSF12006), the Shandong Provincial Natural Science Foundation (ZR2016CB20 and ZR2016CL02), and the State Key Laboratory of Microbial Technology Open Projects Fund (M2016-10).

References

  1. 1.
    Aiba S, Tsunekawa H, Imanaka T (1982) New approach to tryptophan production by Escherichia coli: genetic manipulation of composite plasmids in vitro. Appl Environ Microbiol 43:289–297Google Scholar
  2. 2.
    Azuma S, Tsunekawa H, Okabe M, Okamoto R, Aiba S (1993) Hyper-production of l-trytophan via fermentation with crystallization. Appl Microbiol Biotechnol 39:471–476CrossRefGoogle Scholar
  3. 3.
    Balderas-Hernandez VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernandez-Chavez G, Baez-Viveros JL, Martinez A, Bolivar F, Gosset G (2009) Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact 8:19CrossRefGoogle Scholar
  4. 4.
    Berry A (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol 14:250–256CrossRefGoogle Scholar
  5. 5.
    Caligiuri MG, Bauerle R (1991) Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhimurium. Evidence for an amino-terminal regulatory site. J Biol Chem 266:8328–8335Google Scholar
  6. 6.
    Caligiuri MG, Bauerle R (1991) Subunit communication in the anthranilate synthase complex from Salmonella typhimurium. Science 252:1845–1848CrossRefGoogle Scholar
  7. 7.
    Carmona SB, Moreno F, Bolívar F, Gosset G, Escalante A (2015) Inactivation of the PTS as a strategy to engineer the production of aromatic metabolites in Escherichia coli. J Mol Microbiol Biotechnol 25:195–208CrossRefGoogle Scholar
  8. 8.
    Chan E-C, Tsai H-L, Chen S-L, Mou D-G (1993) Amplification of the tryptophan operon gene in Escherichia coli chromosome to increase l-tryptophan biosynthesis. Appl Microbiol Biotechnol 40:301–305CrossRefGoogle Scholar
  9. 9.
    Chen L, Chen M, Ma C, Zeng AP (2018) Discovery of feed-forward regulation in l-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction. Metab Eng 47:434–444CrossRefGoogle Scholar
  10. 10.
    Chen L, Zeng AP (2017) Rational design and metabolic analysis of Escherichia coli for effective production of l-tryptophan at high concentration. Appl Microbiol Biotechnol 101:559–568CrossRefGoogle Scholar
  11. 11.
    Chen Y, Liu Y, Ding D, Cong L, Zhang D (2018) Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. J Ind Microbiol 45:357–367Google Scholar
  12. 12.
    Cheng LK, Wang J, Xu QY, Xie XX, Zhang YJ, Zhao CG, Chen N (2012) Effect of feeding strategy on l-tryptophan production by recombinant Escherichia coli. Ann Microbiol 62:1625–1634CrossRefGoogle Scholar
  13. 13.
    Cheng LK, Wang J, Xu QY, Zhao CG, Shen ZQ, Xie XX, Chen N (2013) Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of l-tryptophan by Escherichia coli. World J Microbiol Biotechnol 29:883–890CrossRefGoogle Scholar
  14. 14.
    Chye ML, Guest JR, Pittard J (1986) Cloning of the aroP gene and identification of its product in Escherichia coli K-12. J Bacteriol 167:749–753CrossRefGoogle Scholar
  15. 15.
    Chye ML, Pittard J (1987) Transcription control of the aroP gene in Escherichia coli K-12: analysis of operator mutants. J Bacteriol 169:386–393CrossRefGoogle Scholar
  16. 16.
    Ding R, Liu L, Chen X, Cui Z, Zhang A, Ren D, Zhang L (2014) Introduction of two mutations into AroG increases phenylalanine production in Escherichia coli. Biotechnol Lett 36:2103–2108CrossRefGoogle Scholar
  17. 17.
    Dodge TC, Gerstner JM (2010) Optimization of the glucose feed rate profile for the production of tryptophan from recombinant E. coli. J Chem Technol Biot 77:1238–1245CrossRefGoogle Scholar
  18. 18.
    Dong X, Quinn PJ, Wang X (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of l-threonine. Biotechnol Adv 29:11–23CrossRefGoogle Scholar
  19. 19.
    Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S (2007) YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett 275:312–318CrossRefGoogle Scholar
  20. 20.
    Edwards RM, Yudkin MD (1982) Location of the gene for the low-affinity tryptophan-specific permease of Escherichia coli. Biochem J 204:617–619CrossRefGoogle Scholar
  21. 21.
    Escalante A, Calderon R, Valdivia A, de Anda R, Hernandez G, Ramirez OT, Gosset G, Bolivar F (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 9:21CrossRefGoogle Scholar
  22. 22.
    Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623CrossRefGoogle Scholar
  23. 23.
    Flores S, Gosset G, Flores N, de Graaf AA, Bolivar F (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by 13C labeling and NMR spectroscopy. Metab Eng 4:124–137CrossRefGoogle Scholar
  24. 24.
    Ger YM, Chen SL, Chiang HJ, Shiuan D (1994) A single Ser-180 mutation desensitizes feedback inhibition of the phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase in Escherichia coli. J Biochem 116:986–990CrossRefGoogle Scholar
  25. 25.
    Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact 4:14CrossRefGoogle Scholar
  26. 26.
    Gu P, Yang F, Kang J, Wang Q, Qi Q (2012) One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of l-tryptophan in Escherichia coli. Microb Cell Fact 11:30CrossRefGoogle Scholar
  27. 27.
    Gu P, Yang F, Li F, Liang Q, Qi Q (2013) Knocking out analysis of tryptophan permeases in Escherichia coli for improving l-tryptophan production. Appl Microbiol Biotechnol 97:6677–6683CrossRefGoogle Scholar
  28. 28.
    Gunsalus RP, Yanofsky C (1980) Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor. Proc Natl Acad Sci USA 77:7117CrossRefGoogle Scholar
  29. 29.
    Heatwole VM, Somerville RL (1991) The tryptophan-specific permease gene, mtr, is differentially regulated by the tryptophan and tyrosine repressors in Escherichia coli K-12. J Bacteriol 173:3601–3604CrossRefGoogle Scholar
  30. 30.
    Heatwole VM, Somerville RL (1992) Synergism between the Trp repressor and Tyr repressor in repression of the aroL promoter of Escherichia coli K-12. J Bacteriol 174:331–335CrossRefGoogle Scholar
  31. 31.
    Henkin TM, Yanofsky C (2002) Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. BioEssays 24:700–707CrossRefGoogle Scholar
  32. 32.
    Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503CrossRefGoogle Scholar
  33. 33.
    Honore N, Cole ST (1990) Nucleotide sequence of the aroP gene encoding the general aromatic amino acid transport protein of Escherichia coli K-12: homology with yeast transport proteins. Nucleic Acids Res 18:653CrossRefGoogle Scholar
  34. 34.
    Ikeda M (2006) Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626CrossRefGoogle Scholar
  35. 35.
    Jossek R, Bongaerts J, Sprenger GA (2001) Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli. FEMS Microbiol Lett 202:145–148Google Scholar
  36. 36.
    Kikuchi Y, Tsujimoto K, Kurahashi O (1997) Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. Appl Environ Microbiol 63:761–762Google Scholar
  37. 37.
    Kleman GL, Strohl WR (1994) Acetate metabolism by Escherichia coli in high-cell-density fermentation. Appl Environ Microbiol 60:3952–3958Google Scholar
  38. 38.
    Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8CrossRefGoogle Scholar
  39. 39.
    Li K, Frost JW (1999) Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of d-xylose, l-arabinose, and d-glucose carbon sources. Biotechnol Prog 15:876–883CrossRefGoogle Scholar
  40. 40.
    Liu L, Duan X, Wu J (2016) l-Tryptophan production in Escherichia coli improved by weakening the Pta-AckA pathway. PLoS One 11:e0158200CrossRefGoogle Scholar
  41. 41.
    Liu L, Duan X, Wu J (2016) Modulating the direction of carbon flow in Escherichia coli to improve l-tryptophan production by inactivating the global regulator FruR. J Biotechnol 231:141–148CrossRefGoogle Scholar
  42. 42.
    Liu Q, Cheng Y, Xie X, Xu Q, Chen N (2012) Modification of tryptophan transport system and its impact on production of l-tryptophan in Escherichia coli. Bioresour Technol 114:549–554CrossRefGoogle Scholar
  43. 43.
    Martinez K, de Anda R, Hernandez G, Escalante A, Gosset G, Ramirez OT, Bolivar FG (2008) Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 7:1CrossRefGoogle Scholar
  44. 44.
    Mascarenhas D, Ashworth DJ, Chen CS (1991) Deletion of pgi alters tryptophan biosynthesis in a genetically engineered strain of Escherichia coli. Appl Environ Microbiol 57:2995–2999Google Scholar
  45. 45.
    Meza E, Becker J, Bolivar F, Gosset G, Wittmann C (2012) Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Microb Cell Fact 11:127CrossRefGoogle Scholar
  46. 46.
    Munoz AJ, Hernandez-Chavez G, de Anda R, Martinez A, Bolivar F, Gosset G (2011) Metabolic engineering of Escherichia coli for improving l-3,4-dihydroxyphenylalanine (l-DOPA) synthesis from glucose. J Ind Microbiol 38:1845–1852Google Scholar
  47. 47.
    Nahku R, Valgepea K, Lahtvee PJ, Erm S, Abner K, Adamberg K, Vilu R (2010) Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures. J Biotechnol 145:60–65CrossRefGoogle Scholar
  48. 48.
    Ogino T, Garner C, Markley JL, Herrmann KM (1982) Biosynthesis of aromatic compounds: 13C NMR spectroscopy of whole Escherichia coli cells. Proc Natl Acad Sci USA 79:5828–5832CrossRefGoogle Scholar
  49. 49.
    Patnaik R, Liao JC (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol 60:3903–3908Google Scholar
  50. 50.
    Peters-Wendisch P, Netzer R, Eggeling L, Sahm H (2002) 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by l-serine. Appl Microbiol Biotechnol 60:437–441CrossRefGoogle Scholar
  51. 51.
    Pittard AJ, Davidson BE (1991) TyrR protein of Escherichia coli and its role as repressor and activator. Mol Microbiol 5:1585–1592CrossRefGoogle Scholar
  52. 52.
    Pittard J, Yang J (2008) Biosynthesis of the aromatic amino acids. EcoSal Plus 3:1–40CrossRefGoogle Scholar
  53. 53.
    Postma PW, Lengeler JW (1985) Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49:232–269Google Scholar
  54. 54.
    Ray JM, Yanofsky C, Bauerle R (1988) Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. J Biotechnol 170:5500–5506Google Scholar
  55. 55.
    Rodrigues AL, Trachtmann N, Becker J, Lohanatha AF, Blotenberg J, Bolten CJ, Korneli C, de Souza Lima AO, Porto LM, Sprenger GA, Wittmann C (2013) Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab Eng 20:29–41CrossRefGoogle Scholar
  56. 56.
    Rodriguez A, Martinez JA, Flores N, Escalante A, Gosset G, Bolivar F (2014) Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact 13:126Google Scholar
  57. 57.
    Sabido A, Sigala JC, Hernandez-Chavez G, Flores N, Gosset G, Bolivar F (2014) Physiological and transcriptional characterization of Escherichia coli strains lacking interconversion of phosphoenolpyruvate and pyruvate when glucose and acetate are coutilized. Biotechnol Bioeng 111:1150–1160CrossRefGoogle Scholar
  58. 58.
    Sarsero JP, Pittard AJ (1991) Molecular analysis of the TyrR protein-mediated activation of mtr gene expression in Escherichia coli K-12. J Biotechnol 173:7701–7704Google Scholar
  59. 59.
    Shen T, Liu Q, Xie X, Xu Q, Chen N (2012) Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression. J Biomed Biotechnol 2012:605219Google Scholar
  60. 60.
    Shin S, Chang DE, Pan JG (2009) Acetate consumption activity directly determines the level of acetate accumulation during Escherichia coli W3110 growth. J Microbiol Biotechnol 19:1127–1134CrossRefGoogle Scholar
  61. 61.
    Sprenger GA (2007) Aromatic amino acids. Amino acid biosynthesis pathways, regulation and metabolic engineering. In: Steinbüchel A (ed) Microbiology monographs. Springer, Berlin, pp 93–127Google Scholar
  62. 62.
    Sprenger GA (2007) From scratch to value: engineering Escherichia coli wild type cells to the production of l-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75:739–749CrossRefGoogle Scholar
  63. 63.
    Tatarko M, Romeo T (2001) Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Curr Microbiol 43:26–32CrossRefGoogle Scholar
  64. 64.
    Tribe DE, Pittard J (1979) Hyperproduction of tryptophan by Escherichia coli: genetic manipulation of the pathways leading to tryptophan formation. Appl Environ Microbiol 38:181–190Google Scholar
  65. 65.
    Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:532–606CrossRefGoogle Scholar
  66. 66.
    Vitreschak AG, Lyubetskaya EV, Shirshin MA, Gelfand MS, Lyubetsky VA (2004) Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis. FEMS Microbiol Lett 234:357–370CrossRefGoogle Scholar
  67. 67.
    Wallace BJ, Pittard J (1969) Regulator gene controlling enzymes concerned in tyrosine biosynthesis in Escherichia coli. J Bacteriol 97:1234–1241Google Scholar
  68. 68.
    Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM (2012) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9:591–593CrossRefGoogle Scholar
  69. 69.
    Wang J, Cheng LK, Wang J, Liu Q, Shen T, Chen N (2013) Genetic engineering of Escherichia coli to enhance production of l-tryptophan. Appl Microbiol Biotechnol 97:7587–7596CrossRefGoogle Scholar
  70. 70.
    Wang J, Huang J, Shi J, Xu Q, Xie X, Chen N (2013) Fermentation characterization of an l-tryptophan producing Escherichia coli strain with inactivated phosphotransacetylase. Ann Microbiol 63:1219–1224CrossRefGoogle Scholar
  71. 71.
    Weaver LM, Herrmann KM (1990) Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase. J Bacteriol 172:6581–6584CrossRefGoogle Scholar
  72. 72.
    Wilson TJ, Maroudas P, Howlett GJ, Davidson BE (1994) Ligand-induced self-association of the Escherichia coli regulatory protein TyrR. J Mol Biol 238:309–318CrossRefGoogle Scholar
  73. 73.
    Xu Q, Bai F, Chen N, Bai G (2017) Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase l-tryptophan production. PLoS One 12:e0179240CrossRefGoogle Scholar
  74. 74.
    Yakandawala N, Romeo T, Friesen AD, Madhyastha S (2008) Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl Microbiol Biotechnol 78:283–291CrossRefGoogle Scholar
  75. 75.
    Yang J, Camakaris H, Pittard AJ (1996) In vitro transcriptional analysis of TyrR-mediated activation of the mtr and tyrP+3 promoters of Escherichia coli. J Bacteriol 178:6389–6393CrossRefGoogle Scholar
  76. 76.
    Yang J, Ganesan S, Sarsero J, Pittard AJ (1993) A genetic analysis of various functions of the TyrR protein of Escherichia coli. J Bacteriol 175:1767–1776CrossRefGoogle Scholar
  77. 77.
    Yang J, Seo SW, Jang S, Shin SI, Lim CH, Roh TY, Jung GY (2013) Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nat Commun 4:1413CrossRefGoogle Scholar
  78. 78.
    Yanofsky C, Horn V, Gollnick P (1991) Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J Bacteriol 173:6009–6017CrossRefGoogle Scholar
  79. 79.
    Yi J, Li K, Draths KM, Frost JW (2002) Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli. Biotechnol Prog 18:1141–1148CrossRefGoogle Scholar
  80. 80.
    Zhao G, Winkler ME (1994) An Escherichia coli K-12 tktA tktB mutant deficient in transketolase activity requires pyridoxine (vitamin B6) as well as the aromatic amino acids and vitamins for growth. J Bacteriol 176:6134–6138CrossRefGoogle Scholar
  81. 81.
    Zhao Z, Chen S, Wu D, Wu J, Chen J (2011) Effect of gene knockouts of l-tryptophan uptake system on the production of l-tryptophan in Escherichia coli. Process Biochem 47:340–344CrossRefGoogle Scholar
  82. 82.
    Zhao ZJ, Zou C, Zhu YX, Dai J, Chen S, Wu D, Wu J, Chen J (2011) Development of l-tryptophan production strains by defined genetic modification in Escherichia coli. J Ind Microbiol 38:1921–1929Google Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Hao Niu
    • 1
  • Ruirui Li
    • 1
  • Quanfeng Liang
    • 2
  • Qingsheng Qi
    • 2
  • Qiang Li
    • 1
  • Pengfei Gu
    • 1
    Email author
  1. 1.School of Biological Science and TechnologyUniversity of JinanJinanPeople’s Republic of China
  2. 2.State Key Laboratory of Microbial TechnologyShandong UniversityJinanPeople’s Republic of China

Personalised recommendations