Advertisement

Metabolic engineering of Corynebacterium glutamicum for improved l-arginine synthesis by enhancing NADPH supply

  • Milin Zhan
  • Baojun Kan
  • Jinjun Dong
  • Guochao Xu
  • Ruizhi Han
  • Ye NiEmail author
Fermentation, Cell Culture and Bioengineering - Original Paper

Abstract

Corynebacterium glutamicum SNK 118 was metabolically engineered with improved l-arginine titer. Considering the crucial role of NADPH level in l-arginine production, pntAB (membrane-bound transhydrogenase) and ppnK (NAD+ kinase) were co-expressed to increase the intracellular NADPH pool. Expression of pntAB exhibited significant effects on NADPH supply and l-arginine synthesis. Furthermore, argR and farR, encoding arginine repressor ArgR and transcriptional regulator FarR, respectively, were removed from the genome of C. glutamicum. The competitive branch pathway gene ldh was also deleted. Eventually, an engineered C. glutamicum JML07 was obtained for l-arginine production. Fed-batch fermentation in 5-L bioreactor employing strain JML07 allowed production of 67.01 g L−1l-arginine with productivity of 0.89 g L−1 h−1 and yield of 0.35 g g−1 glucose. This study provides a productive l-arginine fermentation strain and an effective cofactor manipulating strategy for promoting the biosynthesis of NADPH-dependent metabolites.

Keywords

Corynebacterium glutamicum NADPH NADP+ transhydrogenase NAD+ kinase l-Arginine 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (31601463), National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-07), Six Talent Peaks Project of Jiangsu Province (2015-SWYY-008), the Program of Introducing Talents of Discipline to Universities (111-2-06), and the Collaborative Innovation Center of Jiangsu Modern Industrial Fermentation. We are grateful to Prof. Xiaoyuan Wang (Jiangnan University, China) for kind assistance on construction of C. glutamicum strains.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10295_2018_2103_MOESM1_ESM.xlsx (10 kb)
Supplementary material 1 (XLSX 10 kb)

References

  1. 1.
    Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Nöh K, Noack S (2011) Comparative C-13 metabolic flux analysis of pyruvate dehydrogenase complex-deficient, l-valine-producing Corynebacterium glutamicum. Appl Environ Microbiol 77(18):6644–6652.  https://doi.org/10.1128/AEM.00575-11 CrossRefGoogle Scholar
  2. 2.
    Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77(10):3300–3310.  https://doi.org/10.1128/AEM.02972-10 CrossRefGoogle Scholar
  3. 3.
    Chemler JA, Fowler ZL, McHugh KP, Koffas MA (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12:96–104.  https://doi.org/10.1016/j.ymben.2009.07.003 CrossRefGoogle Scholar
  4. 4.
    Chen C, Li Y, Hu J, Dong X, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum ATCC13869 for l-valine production. Metab Eng 29:66–75.  https://doi.org/10.1016/j.ymben.2015.03.004 CrossRefGoogle Scholar
  5. 5.
    Cheng F, Luozhong S, Guo Z, Yu H, Stephanopoulos G (2017) Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation. J Biotechnol 12:1700191CrossRefGoogle Scholar
  6. 6.
    Chen Z, Huang J, Wu Y, Wu W, Zhang Y, Liu D (2017) Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Metab Eng 39:151–158.  https://doi.org/10.1016/j.ymben.2016.11.009 CrossRefGoogle Scholar
  7. 7.
    Hänßler E, Müller T, Jeßberger N, Völzke A, Plassmeier J, Kalinowski J, Burkovski A (2007) FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:625–632.  https://doi.org/10.1007/s00253-007-0929-5 CrossRefGoogle Scholar
  8. 8.
    Hou X, Chen X, Zhang Y, Qian H, Zhang W (2012) Improvement of l-lysine production combines with minimization of by-products synthesis in Corynebacterium glutamicum. Amino Acids 43(6):2301–2311.  https://doi.org/10.1007/s00726-012-1308-9 CrossRefGoogle Scholar
  9. 9.
    Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum l-arginine and l-citrulline producer. Appl Environ Microbiol 75:1635–1641CrossRefGoogle Scholar
  10. 10.
    Jackson JB (2003) Proton translocation by transhydrogenase. FEBS Lett 545:18–24CrossRefGoogle Scholar
  11. 11.
    Jorge JM, Nguyen AQ, Perez-Garcia F, Kind S, Wendisch VF (2017) Improved fermentative production of gamma-aminobutyric acid via the putrescine route: systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnol Bioeng 114:862–873CrossRefGoogle Scholar
  12. 12.
    Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol 75:47–53.  https://doi.org/10.1007/s00253-006-0804-9 CrossRefGoogle Scholar
  13. 13.
    Kawai S, Mori S, Mukai T, Hashimoto W, Murata K (2001) Molecular characterization of Escherichia coli NAD kinase. FEBS J 268:4359–4365Google Scholar
  14. 14.
    Kim SY, Lee J, Lee SY (2015) Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine. Biotechnol Bioeng 112:416–421CrossRefGoogle Scholar
  15. 15.
    Lee HC, Kim JS, Jang W, Kim SY (2010) High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149:24–32.  https://doi.org/10.1016/j.jbiotec.2010.06.011 CrossRefGoogle Scholar
  16. 16.
    Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF (2010) Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl Microbiol Biotechnol 87:583–593.  https://doi.org/10.1007/s00253-010-2481-y CrossRefGoogle Scholar
  17. 17.
    Li ZJ, Cai L, Wu Q, Chen GQ (2009) Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly (3-hydroxybutyrate) production. Appl Microbiol Biotechnol 83:939–947.  https://doi.org/10.1007/s00253-009-1943-6 CrossRefGoogle Scholar
  18. 18.
    Man Z, Rao Z, Xu M, Guo J, Yang T, Zhang X, Xu Z (2016) Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply. Metab Eng 38:310–321.  https://doi.org/10.1016/j.ymben.2016.07.009 CrossRefGoogle Scholar
  19. 19.
    Man Z, Xu M, Rao Z, Guo J, Yang T, Zhang X, Xu Z (2016) Systems pathway engineering of Corynebacterium crenatum for improved l-arginine production. Sci Rep 6:28629CrossRefGoogle Scholar
  20. 20.
    Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF (2013) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 145:254–258.  https://doi.org/10.1016/j.biortech.2013.02.053 CrossRefGoogle Scholar
  21. 21.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  22. 22.
    Moritz B, Striegel K, de Graaf AA, Sahm H (2000) Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. FEBS J 267:3442–3452Google Scholar
  23. 23.
    Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY (2014) Metabolic engineering of Corynebacterium glutamicum for l-arginine production. Nat Commun 5:4618CrossRefGoogle Scholar
  24. 24.
    Plassmeier J, Li Y, Rueckert C, SinJMLey AJ (2016) Metabolic engineering Corynebacterium glutamicum to produce triacylglycerols. Metab Eng 33:86–97.  https://doi.org/10.1016/j.ymben.2015.11.002 CrossRefGoogle Scholar
  25. 25.
    Qiao K, Wasylenko TM, Zhou K, Xu P, Stephanopoulos G (2017) Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35:173–177CrossRefGoogle Scholar
  26. 26.
    Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619CrossRefGoogle Scholar
  27. 27.
    Shi A, Zhu X, Lu J, Zhang X, Ma Y (2013) Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 16:1–10.  https://doi.org/10.1016/j.ymben.2012.11.008 CrossRefGoogle Scholar
  28. 28.
    Shi F, Huan X, Wang X, Ning J (2012) Overexpression of NAD kinases improves the l-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Enzyme Microb Tech 51:73–80.  https://doi.org/10.1016/j.enzmictec.2012.04.003 CrossRefGoogle Scholar
  29. 29.
    Shin JH, Lee SY (2014) Metabolic engineering of microorganisms for the production of l-arginine and its derivatives. Microb Cell Fact 13:166CrossRefGoogle Scholar
  30. 30.
    Siebert D, Wendisch VF (2015) Metabolic pathway engineering for production of 1, 2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechol Biofuels 8:91.  https://doi.org/10.1186/s13068-015-0269-0 CrossRefGoogle Scholar
  31. 31.
    Takeno S, Hori K, Ohtani S, Mimura A, Mitsuhashi S, Ikeda M (2016) l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metab Eng 37:1–10.  https://doi.org/10.1016/j.ymben.2016.03.007 CrossRefGoogle Scholar
  32. 32.
    Theron G, Reid SJ (2011) ArgR-promoter interactions in Corynebacterium glutamicum arginine biosynthesis. Appl Biochem Biothech 58:119–127CrossRefGoogle Scholar
  33. 33.
    Van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545.  https://doi.org/10.1007/s002530051557 CrossRefGoogle Scholar
  34. 34.
    Xu D, Tan Y, Huan X, Hu X, Wang X (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Meth 80:86–92.  https://doi.org/10.1016/j.mimet.2009.11.003 CrossRefGoogle Scholar
  35. 35.
    Yamauchi Y, Hirasawa T, Nishii M, Furusawa C, Shimizu H (2014) Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB. J Gen Appl Microbiol 60:112–118CrossRefGoogle Scholar
  36. 36.
    Yin L, Zhao J, Chen C, Hu X, Wang X (2014) Enhancing the carbon flux and NADPH supply to increase l-isoleucine production in Corynebacterium glutamicum. Biotechnol Bioproc E 19:132–142.  https://doi.org/10.1007/s12257-013-0416-z CrossRefGoogle Scholar
  37. 37.
    Wang C, Zhou Z, Cai H, Chen Z, Xu H (2017) Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 44(7):1115–1126.  https://doi.org/10.1007/s10295-017-1933-0 CrossRefGoogle Scholar
  38. 38.
    Wang Y, San KY, Bennett GN (2013) Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotech 24:994–999.  https://doi.org/10.1016/j.copbio.2013.03.022 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
  2. 2.Key Laboratory of Guangxi BiorefineryNanningChina

Personalised recommendations