Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-l-gulonic acid, the precursor of vitamin C

  • Qian Ma
  • Yan-Hui Bi
  • En-Xu Wang
  • Bing-Bing Zhai
  • Xiu-Tao Dong
  • Bin Qiao
  • Ming-Zhu DingEmail author
  • Ying-Jin Yuan
Fermentation, Cell Culture and Bioengineering - Original Paper


Microbial consortia, with the merits of strong stability, robustness, and multi-function, played critical roles in human health, bioenergy, and food manufacture, etc. On the basis of ‘build a consortium to understand it’, a novel microbial consortium consisted of Gluconobacter oxydans, Ketogulonicigenium vulgare and Bacillus endophyticus was reconstructed to produce 2-keto-l-gulonic acid (2-KGA), the precursor of vitamin C. With this synthetic consortium, 73.7 g/L 2-KGA was obtained within 30 h, which is comparable to the conventional industrial method. A combined time-series proteomic and metabolomic analysis of the fermentation process was conducted to further investigate the cell–cell interaction. The results suggested that the existence of B. endophyticus and G. oxydans together promoted the growth of K. vulgare by supplying additional nutrients, and promoted the 2-KGA production by supplying more substrate. Meanwhile, the growth of B. endophyticus and G. oxydans was compromised from the competition of the nutrients by K. vulgare, enabling the efficient production of 2-KGA. This study provides valuable guidance for further study of synthetic microbial consortia.


Microbial consortium Communication Proteomics Metabolomics One-step fermentation 



This work was funded by the Ministry of Science and Technology of China (“973″ Program: 2014CB745100), the National Natural Science Foundation of China (21676190, 21621004), Innovative Talents and Platform Program of Tianjin (16PTGCCX00140, 16PTSYJC00050).

Authors’ contributions

QM and YHB are co-first authors of this work; QM, YHB, MZD and YJY designed the project and drafted the manuscript; QM, YHB, EXW, BBZ, XTD, BQ, and MZD performed the experiments; QM, EXW and MZD did the omics analysis; MZD and YJY supervised the whole research and revised the manuscript. All authors read and approved the final version of manuscript.

Compliance with ethical standards

Conflict of interests

The authors declare no competing financial interests.


  1. 1.
    Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489CrossRefGoogle Scholar
  2. 2.
    Chen MT, Weiss R (2005) Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat Biotechnol 23(12):1551–1555CrossRefGoogle Scholar
  3. 3.
    Ding MZ, Song H, Wang EX, Liu Y, Yuan YJ (2016) Design and construction of synthetic microbial consortia in China. Synth Syst Biotechnol 1(4):230–235CrossRefGoogle Scholar
  4. 4.
    Ding MZ, Zou Y, Song H, Yuan YJ (2014) Metabolomic analysis of cooperative adaptation between co-cultured Bacillus cereus and Ketogulonicigenium vulgare. Plos One 9(4):e94889CrossRefGoogle Scholar
  5. 5.
    Dinh TN, Nagahisa K, Hirasawa T, Furusawa C, Shimizu AH (2008) Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. Plos One 3(7):e2623CrossRefGoogle Scholar
  6. 6.
    Du J, Bai W, Song H, Yuan YJ (2013) Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-l-gulonic acid production in Ketogulonicigenium vulgareBacillus cereus consortium. Metab Eng 19:50–56CrossRefGoogle Scholar
  7. 7.
    Du J, Zhou J, Xue J, Song H, Yuan Y (2012) Metabolomic profiling elucidates community dynamics of the Ketogulonicigenium vulgareBacillus megaterium consortium. Metabolomics 8(5):960–973CrossRefGoogle Scholar
  8. 8.
    Elowitz M, Lim WA (2010) Build life to understand it. Nature 468(7326):889CrossRefGoogle Scholar
  9. 9.
    Gao Y, Yuan YJ (2011) Comprehensive quality evaluation of corn steep liquor in 2-keto-l-gulonic acid fermentation. J Agr Food Chem 59(18):9845–9853CrossRefGoogle Scholar
  10. 10.
    Ghazali FM, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeter Biodegr 54(1):61–67CrossRefGoogle Scholar
  11. 11.
    Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA (2015) Better together: engineering and application of microbial symbioses. Curr Opin Biotech 36:40–49CrossRefGoogle Scholar
  12. 12.
    Jia N, Ding MZ, Du J, Pan CH, Tian G, Lang JD, Fang JH, Gao F, Yuan YJ (2016) Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602 based on comparative genomics and metabolomics studies. Sci Rep 6:23068CrossRefGoogle Scholar
  13. 13.
    Jia N, Ding MZ, Zou Y, Gao F, Yuan YJ (2017) Comparative genomics and metabolomics analyses of the adaptation mechanism in Ketogulonicigenium vulgare-Bacillus thuringiensis consortium. Sci Rep 7:46759CrossRefGoogle Scholar
  14. 14.
    Johns NI, Blazejewski T, Gomes ALC, Wang HH (2016) Principles for designing synthetic microbial communities. Curr Opin Microbio 31:146–153CrossRefGoogle Scholar
  15. 15.
    Jones JA, Vernacchio VR, Collins SM, Shirke AN, Xiu Y, Englaender JA, Cress BF, McCutcheon CC, Linhardt RJ, Gross RA, Koffas MAG (2017) Complete biosynthesis of anthocyanins using E. coli polycultures. Mbio 8(3):e00621-17CrossRefGoogle Scholar
  16. 16.
    Jones JA, Wang X (2017) Use of bacterial co-cultures for the efficient production of chemicals. Curr Opin Biotechnol 53:33–38CrossRefGoogle Scholar
  17. 17.
    Klitgord N, Segrè D (2011) Ecosystems biology of microbial metabolism. Curr Opin Biotech 22(4):541–546CrossRefGoogle Scholar
  18. 18.
    Lin T, Bai X, Hu Y, Li B, Yuan YJ, Song H, Yang Y, Wang J (2017) Synthetic Saccharomyces cerevisiaeShewanella oneidensis consortium enables glucose-fed high-performance microbial fuel cell. AIChE J 63(6):1830–1838CrossRefGoogle Scholar
  19. 19.
    Liu X, Li XB, Jiang J, Liu ZN, Qiao B, Li FF, Cheng JS, Sun X, Yuan YJ, Qiao J, Zhao GR (2018) Convergent engineering of syntrophic Escherichia coli, coculture for efficient production of glycosides. Metab Eng 47:243–253CrossRefGoogle Scholar
  20. 20.
    Liu Y, Ding M, Ling W, Yang Y, Zhou X, Li BZ, Chen T, Nie Y, Wang M, Zeng B, Li X, Liu H, Sun B, Xu H, Zhang J, Jiao Y, Hou Y, Yang H, Xiao S, Lin Q, He X, Liao W, Jin Z, Xie Y, Zhang B, Li T, Lu X, Li J, Zhang F, Wu XL, Song H, Yuan YJ (2017) A three-species microbial consortium for power generation. Energ Environ Sci 10(7):1600–1609CrossRefGoogle Scholar
  21. 21.
    Ma Q, Zhang W, Zhang L, Qiao B, Pan C, Yi H, Wang L, Yuan YJ (2012) Proteomic analysis of Ketogulonicigenium vulgare under glutathione reveals high demand for thiamin transport and antioxidant protection. Plos One 7(2):e32156CrossRefGoogle Scholar
  22. 22.
    Ma Q, Zhou J, Zhang W, Meng X, Sun J, Yuan YJ (2011) Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. Plos One 6(10):e26108CrossRefGoogle Scholar
  23. 23.
    Ma Q, Zou Y, Lv Y, Song H, Yuan YJ (2014) Comparative proteomic analysis of experimental evolution of the Bacillus cereus-Ketogulonicigenium vulgare co-culture. Plos One 9(3):e91789CrossRefGoogle Scholar
  24. 24.
    Maintinguer SI, Fernandes BS, Duarte ICS, Saavedra NK, Adorno MAT, Varesche MB (2008) Fermentative hydrogen production by microbial consortium. Int J Hydrogen Energ 33(16):4309–4317CrossRefGoogle Scholar
  25. 25.
    Mannazzu I, Angelozzi D, Belviso S, Budroni M, Farris GA, Goffrini P, Lodi T, Marzona M, Bardi L (2008) Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity. Int J Food Microbiol 21(1):84–91CrossRefGoogle Scholar
  26. 26.
    Pan CH, Wang EX, Jia N, Jia N, Dong XT, Liu Y, Ding MZ, Yuan YJ (2017) Reconstruction of amino acid biosynthetic pathways increases the productivity of 2-keto-l-gulonic acid in Ketogulonicigenium vulgare-Bacillus endophyticus consortium via genes screening. J Ind Microbiol Biotechnol 44(7):1031–1040CrossRefGoogle Scholar
  27. 27.
    Picataggio S (2009) Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals. Curr Opin Biotech 20(3):325–329CrossRefGoogle Scholar
  28. 28.
    Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technol 81(1):25–32CrossRefGoogle Scholar
  29. 29.
    Röling WFM, Ferrer M, Golyshin PN (2010) Systems approaches to microbial communities and their functioning. Curr Opin Biotech 21(4):532–538CrossRefGoogle Scholar
  30. 30.
    Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SSJ, Poh CL, Chang MW (2011) Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7(1):521CrossRefGoogle Scholar
  31. 31.
    Shong J, Jimenez Diaz MR, Collins CH (2012) Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotech 23(5):798–802CrossRefGoogle Scholar
  32. 32.
    Shou W, Ram S, Vilar JMG (2007) Synthetic cooperation in engineered yeast populations. P Natl Acad Sci USA 104(6):1877–1882CrossRefGoogle Scholar
  33. 33.
    Song H, Ding MZ, Jia XQ, Ma Q, Yuan YJ (2014) Synthetic microbial consortia from systematic analysis to construction and applications. Chem Soc Rev 43:6954–6981CrossRefGoogle Scholar
  34. 34.
    Tkac J, Svitel J, Vostiar I, Navratil M, Gemeiner P (2009) Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemist 76(1):53–62CrossRefGoogle Scholar
  35. 35.
    Wang EX, Ding MZ, Ma Q, Dong XT, Yuan YJ (2016) Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation. Microb Cell Fact 15(1):21CrossRefGoogle Scholar
  36. 36.
    Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4(1):78–83CrossRefGoogle Scholar
  37. 37.
    Wilmes P, Bowen BP, Thomas BC, Mueller RS, Denef VJ, VerBerkmoes NC, Hettich RL, Northen TR, Banfield JF (2010) Metabolome-proteome differentiation coupled to microbial divergence. MBio 1(5):728–736CrossRefGoogle Scholar
  38. 38.
    You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69(3):1499–1503CrossRefGoogle Scholar
  39. 39.
    Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR (2015) Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA 112(51):E7156Google Scholar
  40. 40.
    Zhang H, Pereira B, Li Z, Stephanopoulos G (2015) Engineering Escherichia coli coculture systems for the production of biochemical products. Proc Natl Acad Sci USA 112(27):8266–8271CrossRefGoogle Scholar
  41. 41.
    Zhou J, Ma Q, Yi H, Wang L, Song H, Yuan YJ (2011) Metabolome profiling reveals metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced swarm motility. Appl Environ Micro 77(19):7023–7030CrossRefGoogle Scholar
  42. 42.
    Zhou K, Qiao K, Steven E, Gregory S (2015) Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33(4):377CrossRefGoogle Scholar
  43. 43.
    Zhou X, Cahoon M, Rosa P, Hedstrom L (1997) Expression, purification, and characterization of inosine 5′-monophosphate dehydrogenase from Borrelia burgdorferi. J Biol Chem 272(35):21977–21981CrossRefGoogle Scholar
  44. 44.
    Zuroff TR, Curtis WR (2012) Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biot 93(4):1423–1435CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.College of BiotechnologyTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  3. 3.SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations