Skip to main content
Log in

Poly(3-hydroxybutyrate) accumulation by Azotobacter vinelandii under different oxygen transfer strategies

  • Fermentation, Cell Culture and Bioengineering - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Azotobacter vinelandii OP is a bacterium that produces poly(3-hydroxybutyrate) (PHB). PHB production in a stirred bioreactor, at different oxygen transfer strategies, was evaluated. By applying different oxygen contents in the inlet gas, the oxygen transfer rate (OTR) was changed under a constant agitation rate. Batch cultures were performed without dissolved oxygen tension (DOT) control (using 9% and 21% oxygen in the inlet gas) and under DOT control (4%) using gas blending. The cultures that developed without DOT control were limited by oxygen. As result of varying the oxygen content in the inlet gas, a lower OTR (4.6 mmol L−1 h−1) and specific oxygen uptake rate (11.6 mmol g−1 h−1) were obtained using 9% oxygen in the inlet gas. The use of 9% oxygen in the inlet gas was the most suitable for improving the intracellular PHB content (56 ± 6 w w−1). For the first time, PHB accumulation in A. vinelandii OP cultures, developed with different OTRs, was compared under homogeneous mixing conditions, demonstrating that bacterial respiration affects PHB synthesis. These results can be used to design new oxygen transfer strategies to produce PHB under productive conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen GQ, Jiang XR (2018) Engineering microorganisms for improving polyhydroxyalkanoates biosynthesis. Curr Opin Biotechnol 53:20–25

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Yu J (2001) Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions. J Ind Microbiol Biotechnol 26:121–126

    Article  CAS  PubMed  Google Scholar 

  3. Díaz-Barrera A, Andler R, Martínez I, Peña C (2016) Poly-3-hydroxybutyrate production by Azotobacter vinelandii strains in batch cultures at different oxygen transfer rates. J Chem Technol Biotechnol 91:1063–1071

    Article  CAS  Google Scholar 

  4. Millán M, Segura D, Galindo E, Peña C (2016) Molecular mass of poly-3-hydroxybutyrate (P3HB) produced by Azotobacter vinelandii is determined by the ratio of synthesis and degradation under fixed dissolved oxygen tension. Process Biochem 51:950–958

    Article  CAS  Google Scholar 

  5. Peña C, López S, García A, Espín G, Romo-Uribe A, Segura D (2014) Biosynthesis of poly-β-hydroxybutyrate (PHB) with a high molecular mass by a mutant strain of Azotobacter vinelandii (OPN). Ann Microbiol 64:39–47

    Article  CAS  Google Scholar 

  6. Galindo E, Peña C, Núñez C, Segura D, Espín G (2007) Molecular and bioengineering strategies to improve alginate and polyhydroxyalkanoates production by Azotobacter vinelandii. Microb Cell Fact 6(7):1–16

    Google Scholar 

  7. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  8. Peralta-Gil M, Segura D, Guzmán J, Servín-González L, Espín G (2002) Expression of the Azotobacter vinelandii poly-β-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and it dependent on the transcriptional activator PhbR. J Bacteriol 184(20):5672–5677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Segura D, Guzmán J, Espín G (2003) Azotobacter vinelandii mutants that overproduce poly-β-hydroxybutyrate or alginate. Appl Microbiol Biotechnol 63:159–163

    Article  CAS  PubMed  Google Scholar 

  10. Díaz-Barrera A, Soto E, Altamirano C (2012) Alginate production and alg8 gene expression by Azotobacter vinelandii in continuous cultures. J Ind Microbiol Biotechnol 39:613–621

    Article  CAS  PubMed  Google Scholar 

  11. Lozano E, Galindo E, Peña C (2011) Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions. Microb Cell Fact 10:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. García A, Ferrer P, Albiol J, Castillo T, Segura D, Peña C (2018) Metabolic flux analysis and the NAD(P)H/NAD(P)+ ratios in chemostat cultures of Azotobacter vinelandii. Microb Cell Fact 17:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Díaz-Barrera A, Silva P, Ávalos R, Acevedo F (2009) Alginate molecular mass produced by Azotobacter vinelandii in response to changes of the O2 transfer rate in chemostat cultures. Biotechnol Lett 31:825–829

    Article  CAS  PubMed  Google Scholar 

  14. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  15. Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7(2):157–162

    Article  CAS  PubMed  Google Scholar 

  16. Díaz-Barrera A, Peña C, Galindo E (2007) The oxygen transfer rate influences the molecular mass of the alginate produced by Azotobacter vinelandii. Appl Microbiol Biotechnol 76(4):903–910

    Article  CAS  PubMed  Google Scholar 

  17. García A, Segura D, Espín G, Galindo E, Castillo T, Peña C (2014) High production of poly-β-hydroxybutyrate (PHB) by an Azotobacter vinelandii mutant altered in PHB regulation using a fed-batch fermentation process. Biochem Eng J 82:117–123

    Article  CAS  Google Scholar 

  18. Millán M, Salazar M, Segura D, Castillo T, Díaz-Barrera A, Peña C (2017) Molecular mass of poly-3-hydroxybutyrate (P3HB) produced by Azotobacter vinelandii is influenced by the polymer content in the inoculum. J Biotech 259:50–55

    Article  CAS  Google Scholar 

  19. Koller M, Bona R, Chiellini E, Grillo Fernandes E, Horvat P, Kutschera C, Hesse P, Braunegg G (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresour Technol 99:4854–4863

    Article  CAS  Google Scholar 

  20. Faccin DJL, Rech R, Secchi AR, Cardozo NSM, Ayub MAZ (2013) Influence of oxygen transfer rate on the accumulation of poly(3-hydroxybutyrate) by Bacillus megaterium. Process Biochem 48:420–425

    Article  CAS  Google Scholar 

  21. Ouyang P, Wang H, Hajnal I, Wu Q, Guo Y, Chen GQ (2018) Increasing oxygen availability for improving poly(3-hydroxybutyrate) production by Halomonas. Metab Eng 45:20–31

    Article  CAS  PubMed  Google Scholar 

  22. Castillo T, Heinzle E, Peifer S, Schneider K, Peña C (2013) Oxygen supply strongly influences metabolic fluxes, the production of poly(3-hydroxybutyrate) and alginate, and the degree of acetylation of alginate in Azotobacter vinelandii. Process Biochem 48(7):995–1003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support came from the FONDECYT Grant 1170896 and Project PCCI40039. The present work was supported by the postdoctoral fellowship of the VRIEA-PUCV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Díaz-Barrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Barrera, A., Urtuvia, V., Padilla-Córdova, C. et al. Poly(3-hydroxybutyrate) accumulation by Azotobacter vinelandii under different oxygen transfer strategies. J Ind Microbiol Biotechnol 46, 13–19 (2019). https://doi.org/10.1007/s10295-018-2090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2090-9

Keywords

Navigation