Purification and characterization of indochrome type blue pigment produced by Pseudarthrobacter sp. 34LCH1 isolated from Atacama desert

  • Sebastian Finger
  • Félix A. GodoyEmail author
  • Geraldine Wittwer
  • Carlos P. Aranda
  • Raúl Calderón
  • Claudio D. Miranda
Natural Products - Original Paper


The interest in and demand for natural dyes has increased significantly in recent years; however, very few natural blue dyes are commercially available, because blue colored compounds in nature are relatively rare. In this study, a blue pigment-producing bacteria from Lake Chungará (Atacama Desert, Chile) was isolated, and its blue pigment was purified and chemically characterized. The pigment-producing strain was identified as Pseudarthrobacter sp. by 16S rRNA gene sequencing. The pigment was separated from the filtered culture medium by column chromatography/solid-phase extraction using different resins (ionic exchange, C-18, size exclusion). The strain produced up to 2.5 g L−1 of blue pigment, which was very soluble in water, partially soluble in methanol and insoluble in other organic solvents. The pigment was analyzed and characterized by analytical HPLC, UV–Vis, FT-IR, and H-NMR, and purified by semi-preparative HPLC. The pigment was non-toxic to brine shrimp (LD50 > 2.3 g L−1) and was stable at pH 6–10 at temperatures below 60 °C. HPLC analysis shows that the pigment is composed of four major blue fractions. The physicochemical properties and structural analysis demonstrate that this pigment belongs to the indochrome isomers, whose properties have yet to have been characterized. The high solubility in water, good stability in neutral and basic pH, and negligible toxicity of the blue pigment make it a good candidate suitable for several industrial and possibly some food applications.


Physic-chemical properties Chemical characterization Natural colorant Indochrome Blue dyes Bacterial pigment 



The authors thank Dr. Matthew Lee for his support for the review of this manuscript. This work was supported by Innova CORFO-Chile (IDL2-18532) and Internal Research Project on Applied Science of the Universidad de Los Lagos, not existing conflicts of interest with funding source.

Supplementary material

10295_2018_2088_MOESM1_ESM.docx (282 kb)
Supplementary material 1 (DOCX 281 kb)


  1. 1.
    Adeel S, Rafi S, Salman M, Abrar S (2017) Potential resurgence of natural dyes in applied fields. In: Ulislam S (ed) plant-based natural products: derivatives and applications. Wiley, Beverly, pp 1–25Google Scholar
  2. 2.
    Akilandeswari P, Pradeep BV (2017) Microbial pigments: potential functions and prospects. In: Singh OV (ed) Biopigmentation and biotechnological implementations. Wiley, New Jersey, pp 241–261CrossRefGoogle Scholar
  3. 3.
    Buchweitz M (2016) natural solutions for blue colors in food. In: Carle R, Schweiggert RM (eds) Handbook on natural pigments in food and beverages. Woodhead Publishing, Amsterdam, pp 355–384CrossRefGoogle Scholar
  4. 4.
    Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247CrossRefGoogle Scholar
  5. 5.
    Bycrof BW, Payne DJ (2013) Dictionary of antibiotics and related substances with CD-ROM, 2nd edn. CRC Press, LondonCrossRefGoogle Scholar
  6. 6.
    Cang S, Sanada M, Johdo O, Ohta S, Nagamatsu Y et al (2000) High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnol Lett 22:1761–1765CrossRefGoogle Scholar
  7. 7.
    Fernández-López JA, Roca MJ, Angosto JM, Obón JM (2018) Betaxanthin-rich extract from cactus pear fruits as yellow water-soluble colorant with potential application in foods. Plant Foods Hum Nutr 73(2):146–153CrossRefGoogle Scholar
  8. 8.
    Habermehl G, Christ BG (1977) Amylocyanin, the blue pigment of Streptomyces coelicolor. Naturwissenschaften 64(2):97–98CrossRefGoogle Scholar
  9. 9.
    Habermehl G, Christ B, Kutzner H (1977) Isolation, Separation and Structure of the Blue Pigment Amylocyanin from Streptomyces coelicolor Müller. Z Naturforsch B 32:1195–1203CrossRefGoogle Scholar
  10. 10.
    Hamidi M, Jovanova B, Panovska T (2014) Toxicological evaluation of the plant products using Brine Shrimp (Artemia salina L.) model. Maced Pharm Bull 60(1):9–18Google Scholar
  11. 11.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549CrossRefGoogle Scholar
  12. 12.
    Knackmuss HJ, Beckmann W (1973) The structure of Nicotine Blue from Arthrobacter oxidans. Arch Mikrobiol 90:167–169CrossRefGoogle Scholar
  13. 13.
    Knackmuss HJ, Briaire J (1970) Struktur und Synthese des Indochroms. Eur J Org Chem 736:68–74Google Scholar
  14. 14.
    Knackmuss HJ, Cosens G, Starr MP (1969) The soluble blue pigment, indochrome, of Arthrobacter polychromogenes. Eur J Biochem 10:90–95CrossRefGoogle Scholar
  15. 15.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, London, pp 115–175Google Scholar
  16. 16.
    Libralato G, Prato E, Migliore L, Cicero AM, Manfrade L (2016) A review of toxicity testing protocols and endpoints with Artemia spp. Ecol Indic 69:35–49CrossRefGoogle Scholar
  17. 17.
    Lu Y, Wang L, Xue Y, Zhang C, Xing XH et al (2009) Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang, China. Biochem Eng J 43:135–141CrossRefGoogle Scholar
  18. 18.
    Malik K, Tokkas J, Goyal S (2012) Microbial pigments: a review. Int J Microbial Res Technol 1:361–365Google Scholar
  19. 19.
    Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE et al (1982) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45(5):31–34CrossRefGoogle Scholar
  20. 20.
    Newsome AG, Culver CA, van Breemen RB (2014) Nature’s Palette: the Search for Natural Blue Colorants. J Agric Food Chem 62:6498–6511CrossRefGoogle Scholar
  21. 21.
    Newsome AG, Murphy BT, van Breemen RB (2013) Isolation and characterization of natural blue pigments from underexplored sources. In: Tunick MH, Onwulata CI (eds) ACS Symposium Series 1138. American Chemical Society, Washington DC, pp 105–125Google Scholar
  22. 22.
    Nigam PS, Luke JL (2016) Food additives: production of microbial pigments and their antioxidant properties. Curr Opin Food Sci 7:93–100CrossRefGoogle Scholar
  23. 23.
    Panesar R, Kaur S, Panesar PS (2015) Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci 1:70–76CrossRefGoogle Scholar
  24. 24.
    Pankaj VP, Kumar R (2016) Microbial pigment as a potential natural colorant for contributing to mankind. Res Trends Mol Biol, pp 85-98Google Scholar
  25. 25.
    Parra AL, Yhebra RS, Sardiñas IG, Buela LI (2001) Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 8:395–400CrossRefGoogle Scholar
  26. 26.
    Rodriguez-Amaya DB (2016) Natural food pigments and colorants. Curr Opin Food Sci 7:20–26CrossRefGoogle Scholar
  27. 27.
    Schippers-Lammertse AF, Muijsers AO, Klatser-Oedekerk KB (1963) Arthrobacter polychromogenes nov. sp., its pigments, and a bacteriophage of this species. Antonie Van Leeuwenhoek 29:1–15CrossRefGoogle Scholar
  28. 28.
    Solis PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD (1993) A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med 59:250–252CrossRefGoogle Scholar
  29. 29.
    Sutthiwong N, Fouillaud M, Valla A, Caro Y, Dufossé L (2014) Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended hue range. Food Res Int 65(B):156–162CrossRefGoogle Scholar
  30. 30.
    Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079CrossRefGoogle Scholar
  31. 31.
    Wrolstad RE, Culver CA (2012) Alternatives to those artificial FD&C food colorants. Annu Rev Food Sci Technol 3:59–77CrossRefGoogle Scholar
  32. 32.
    Xu F, Gage D, Zhan J (2015) Efficient production of indigoidine in Escherichia coli. J Ind Microbiol Biotechnol 42:1149–1155CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Sebastian Finger
    • 1
  • Félix A. Godoy
    • 2
    Email author
  • Geraldine Wittwer
    • 2
  • Carlos P. Aranda
    • 3
  • Raúl Calderón
    • 4
    • 5
  • Claudio D. Miranda
    • 6
  1. 1.Facultad de Medicina y CienciaUniversidad San SebastiánPuerto MonttChile
  2. 2.Centro i-marUniversidad de Los LagosPuerto MonttChile
  3. 3.Departamento de Ciencias Biológicas y BiodiversidadUniversidad de Los LagosOsornoChile
  4. 4.Centro de Investigación en Recursos Naturales y SustentabilidadUniversidad Bernardo O‘HigginsSantiagoChile
  5. 5.Instituto de Investigaciones Agropecuarias, INIA La PlatinaSantiagoChile
  6. 6.Laboratorio de Patobiología Acuática, Departamento de AcuiculturaUniversidad Católica del NorteCoquimboChile

Personalised recommendations