Advertisement

Metabolomics profiling reveals the mechanism of increased pneumocandin B0 production by comparing mutant and parent strains

  • Ping Song
  • Kai Yuan
  • Tingting Qin
  • Ke Zhang
  • Xiao-jun Ji
  • Lujing Ren
  • Rongfeng Guan
  • Jianping Wen
  • He Huang
Fermentation, Cell Culture and Bioengineering - Original Paper
  • 15 Downloads

Abstract

Metabolic profiling was used to discover mechanisms of increased pneumocandin B0 production in a high-yield strain by comparing it with its parent strain. Initially, 79 intracellular metabolites were identified, and the levels of 15 metabolites involved in six pathways were found to be directly correlated with pneumocandin B0 biosynthesis. Then by combining the analysis of key enzymes, acetyl-CoA and NADPH were identified as the main factors limiting pneumocandin B0 biosynthesis. Other metabolites, such as pyruvate, α-ketoglutaric acid, lactate, unsaturated fatty acids and previously unreported metabolite γ-aminobutyric acid were shown to play important roles in pneumocandin B0 biosynthesis and cell growth. Finally, the overall metabolic mechanism hypothesis was formulated and a rational feeding strategy was implemented that increased the pneumocandin B0 yield from 1821 to 2768 mg/L. These results provide practical and theoretical guidance for strain selection, medium optimization, and genetic engineering for pneumocandin B0 production.

Keywords

Glarea lozoyensis Pneumocandin B0 Metabolomics profiling Rational feeding strategies Enzyme activity 

Abbreviations

C18:1n7

11-Vaccenic acid

AKG

2-Ketoglutaric acid

GABA

4-Aminobutyric acid

6PG

6-Phosphogluconate

C18:2n6

9,12-Octadecadienoic acid

C18:3n3

9,12,15-Octadecatrienoic acid

C18:1n9,w9

9-Octadecenoic acid

ACE

Acetic acid

Ac-CoA

Acetyl-CoA

Ala

Alamine

ACL

ATP:citrate lyase

SUA

Butanedioic acid

CHOR

Chorismic acid

CA

Citric acid

C22:0

Docosanoic acid

X5P

d-Xylulose 5-phosphate

EMP

Embden–Meyerhof–Parnas

E4P

Erythrose 4-phosphate

OAA

Ethanedioic acid

FRU

Fructose

F6P

Fructose 6-phosphate

G1P

Glucose 1-phosphate

G6P

Glucose 6-phosphate

G3P

Glucose-3-phosphate

G6PDH

Glucose-6-phosphate dehydrogenase

Gln

Gluttamine

Glu

Gluyamic acid

Gly

Glycine

ICDH

Isocitrate dehydrogenase

LAC

Lactate

Lys

Lysine

MA

Malic acid

ME

Malic enzyme

MAN

Mannitol

M1P

Mannose-1-phosphate

C14:0

Myristic acid

NRPS

Nonribosomal peptide synthase

C18:0

Octadecanoic acid

Orn

Othnithine

OAA

Oxaloacetic acid

C16:0

Palmitic acid

PPP

Pentose phosphate pathway

Phe

Phenylalanine

PHEN

Phenylpropanolds

PEP

Phosphoenolpyruvate

PKS

Polyketide synthase

Pro

Proline

PDH

Pyruvate dehydrogenase

PYR

Pyruvic acid

R5P

Ribose 5-phosphate

RL5P

Ribulose 5-phosphate

S7P

Sedoheptulose 7-phosphate

Ser

Serine

SME

Shikimate metabolism

SUA

Succinic acid

SSA

Succinic semialdehyde

SUC-CoA

Succinly-CoA

Thr

Threonine

TCA

Tricarboxylic acid

Trp

Tryptophan

Tyr

Tyrosine

Val

Valine

X5P

Xylulose 5-phosphate

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (No. 21776136), the National High Technology Research and Development Program (No. 2015AA021003), the Program for Innovative Research Team in University of Jiangsu Province (2015), the Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 17KJB530006), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX170960), the Natural Science Foundation of Jiangsu Province (BK20161048) and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (No. XTE1854). We also would like to express our sincere gratitude to the anonymous reviewers for their careful work and constructive comments that have helped improve the manuscript substantially.

Supplementary material

10295_2018_2047_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    Andersen MR, Nielsen ML, Nielsen J (2008) Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol Syst Biol 4:178CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Balkovec JM, Hughes DL, Masurekar PS, Sable CA, Schwartz RE, Singh SB (2014) Discovery and development of first in class antifungal caspofungin (CANCIDAS)-A case study. Nat Prod Rep 31:15–34CrossRefPubMedGoogle Scholar
  3. 3.
    Bills GF, Platas G, Pelaez F, Masurekar P (1999) Reclassification of a pneumocandin-producing anamorph, Glarea lozoyensis gen. et sp. nov., previously identified as Zalerion arboricola. Mycol Res 103:179–192CrossRefGoogle Scholar
  4. 4.
    Boles E, de Jong-Gubbels P, Pronk JT (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180:2875–2882PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  6. 6.
    Chang GF, Luo ZL, Gu ST, Wu QH, Chang M, Wang XG (2013) Fatty acid shifts and metabolic activity changes of Schizochytrium sp S31 cultured on glycerol. Biores Technol 142:255–260CrossRefGoogle Scholar
  7. 7.
    Chen L, Li Y, Yue Q, Loksztejn A, Yokoyama K, Felix EA, Liu XZ, Zhang NY, An ZG, Bills GF (2016) Engineering of new pneumocandin side-chain analogues from Glarea lozoyensis by mutasynthesis and evaluation of their antifungal activity. ACS Chem Biol 11:2724–2733CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen L, Yue Q, Zhang X, Xiang M, Wang C, Li S, Che Y, Ortiz-Lopez FJ, Bills GF, Liu X, An Z (2013) Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis. BMC Genom 14:339CrossRefGoogle Scholar
  9. 9.
    Chen X, Xie F, Zeng X, Li D, Chen S, Li J, Wang Z (2014) Supplementations of ornithine and KNO3 enhanced bacitracin production by Bacillus licheniformis LC-11. Ann Microbiol 64:509–514CrossRefGoogle Scholar
  10. 10.
    Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276:244–250CrossRefPubMedGoogle Scholar
  11. 11.
    Connors N, Petersen L, Hughes R, Saini K, Olewinski R, Salmon P (2000) Residual fructose and osmolality affect the levels of pneumocandins B0 and C0 produced by Glarea lozoyensis. Appl Microbiol Biotechnol 54:814–818CrossRefPubMedGoogle Scholar
  12. 12.
    Dave KK, Punekar NS (2015) Expression of lactate dehydrogenase in Aspergillus niger for l-lactic acid production. Plos One 10(12):e0145459CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151CrossRefPubMedGoogle Scholar
  14. 14.
    Gong C, Qi B, Tao H, Wu Z (2017) Tracking of pigment accumulation and secretion in extractive fermentation of Monascus anka GIM 3.592. Microb Cell Fact 16:172CrossRefGoogle Scholar
  15. 15.
    Houwaart S, Youssar L, Huttel W (2014) Pneumocandin biosynthesis: involvement of a trans-selective proline hydroxylase. ChemBioChem 15:2365–2369CrossRefPubMedGoogle Scholar
  16. 16.
    Hult K, Gatenbeck S (1978) Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata. Eur J Biochem 88:607–612CrossRefPubMedGoogle Scholar
  17. 17.
    Ilchenko AP, Lysyanskaya VY, Finogenova TV, Morgunov IG (2010) Characteristic properties of metabolism of the Yeast Yarrowia lipolytica during the synthesis of alpha-ketoglutaric acid from ethanol. Microbiology 79:450–455CrossRefGoogle Scholar
  18. 18.
    Jordan P, Choe JY, Boles E, Oreb M (2016) Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci Rep 6:2503Google Scholar
  19. 19.
    Junker B, Walker A, Hesse M, Lester M, Vesey D, Christensen J, Burgess B, Connors N (2009) Pilot-scale process development and scale up for antifungal production. Bioprocess Biosyst Eng 32:443–458CrossRefPubMedGoogle Scholar
  20. 20.
    Kuratsu Y, Arai Y, Inuzuka K, Suzuki T (1983) Stimulatory effect of aspartic-acid on colistin production by Bacillus Polymyxa. Agric Biol Chem Tokyo 47:2607–2612Google Scholar
  21. 21.
    Kurtz MB, Heath IB, Marrinan J, Dreikorn S, Onishi J, Douglas C (1994) Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-d-glucan synthase. Antimicrob Agents Chemother 38:1480–1489CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Leonard JE, Saier MH (1983) Mannitol-specific enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles. J Biol Chem 258:10757–10760PubMedGoogle Scholar
  23. 23.
    Li J, Ren LJ, Sun GN, Qu L, Huang H (2013) Comparative metabolomics analysis of docosahexaenoic acid fermentation processes by Schizochytrium sp. under different oxygen availability conditions. OMICS 17:269–281CrossRefPubMedGoogle Scholar
  24. 24.
    Li J, Yang Y, Chu J, Huang M, Li L, Zhang X, Wang Y, Zhuang Y, Zhang S (2010) Quantitative metabolic flux analysis revealed uneconomical utilization of ATP and NADPH in Acremonium chrysogenum fed with soybean oil. Bioprocess Biosyst Eng 33:1119–1129CrossRefPubMedGoogle Scholar
  25. 25.
    Li Y, Chen L, Yue Q, Liu XZ, An ZQ, Bills GF (2015) Genetic manipulation of the pneumocandin biosynthetic pathway for generation of analogues and evaluation of their antifungal activity. ACS Chem Biol 10:1702–1710CrossRefPubMedGoogle Scholar
  26. 26.
    Liu JZ, Zhang QL, Weng LP, Ji LN (2003) Screening and mutagenesis of Aspergillus niger for the improvement of glucose-6-phosphate dehydrogenase production. Appl Biochem Microbiol 39:493–496CrossRefGoogle Scholar
  27. 27.
    Masurekar PS, Fountoulakis JM, Hallada TC, Sosa MS, Kaplan L (1992) Pneumocandins from Zalerion arboricola. 2. Modification of product spectrum by mutation and medium manipulation. J Antibiot 45:1867–1874CrossRefPubMedGoogle Scholar
  28. 28.
    Meena M, Prasad V, Zehra A, Gupta VK, Upadhyay RS (2015) Mannitol metabolism during pathogenic fungal-host interactions under stressed conditions. Front Microbiol 6:1019CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Meixner-Monori B, Kubicek CP, Harrer W, Schreferl G, Rohr M (1986) NADP-specific isocitrate dehydrogenase from the citric acid-accumulating fungus Aspergillus niger. Biochem J 236:549–557CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nemeria N, Yan Y, Zhang Z, Brown AM, Arjunan P, Furey W, Guest JR, Jordan F (2001) Inhibition of the Escherichia coli pyruvate dehydrogenase complex E1 subunit and its tyrosine 177 variants by thiamin 2-thiazolone and thiamin 2-thiothiazolone diphosphates. Evidence for reversible tight-binding inhibition. J Biol Chem 276:45969–45978CrossRefPubMedGoogle Scholar
  31. 31.
    Phibbs PV Jr, Eagon RG (1970) Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa. Arch Biochem Biophys 138:470–482CrossRefPubMedGoogle Scholar
  32. 32.
    Qin TT, Song P, Wang XT, Ji XJ, Ren LJ, Huang H (2016) Protoplast mutant selection of Glarea lozoyensis and statistical optimization of medium for pneumocandin B0 yield-up. Biosci Biotechnol Biochem 80:2241–2246CrossRefGoogle Scholar
  33. 33.
    Qu L, Ren L-J, Li J, Sun G-N, Sun L-N, Ji X-J, Nie Z-K, Huang H (2013) Biomass composition, lipid characterization, and metabolic profile analysis of the fed-batch fermentation process of two different docosahexaenoic acid producing Schizochytrium sp. strains. Appl Biochem Biotechnol 171:1865–1876CrossRefPubMedGoogle Scholar
  34. 34.
    Ren LJ, Huang H, Xiao AH, Lian M, Jin LJ, Ji XJ (2009) Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess Biosyst Eng 32:837–843CrossRefPubMedGoogle Scholar
  35. 35.
    Shibukawa M, Ohsawa T (1966) l-Glutamic acid fermentation with molasses: part VI. Effect of the saturated-unsaturated fatty acid ratio in the cell membrane fraction on the extracellular accumulation of l-glutamate. Biosci Biotechnol Biochem 30:750–758Google Scholar
  36. 36.
    Takeda Y, Suzuki F, Inoue H (1969) [27] ATP citrate lyase (citrate-cleavage enzyme). Methods Enzymol 13:153–160CrossRefGoogle Scholar
  37. 37.
    van Gulik WM, de Laat WTAM, Vinke JL, Heijnen JJ (2000) Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnol Bioeng 68:602–618CrossRefPubMedGoogle Scholar
  38. 38.
    Wang G, Huang D, Qi H, Wen J, Jia X, Chen Y (2013) Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production. Bioresour Technol 137:1–8CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Y, Zhang B, Lu L, Huang Y, Xu G (2013) Enhanced production of pigments by addition of surfactants in submerged fermentation of Monascus purpureus H1102. J Sci Food Agric 93:3339–3344CrossRefPubMedGoogle Scholar
  40. 40.
    Wu JHD, Yang L, Demain AL (1984) further-studies on the role of phenylalanine in gramicidins biosynthesis by Bacillus Brevis. J Biotechnol 1:81–94CrossRefGoogle Scholar
  41. 41.
    Xia ML, Huang D, Li SS, Wen JP, Jia XQ, Chen YL (2013) Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnol Bioeng 110:2717–2730CrossRefPubMedGoogle Scholar
  42. 42.
    Yin X, Shin HD, Li JH, Du GC, Liu L, Chen J (2017) Sci Rep 7:41040CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Youssar L, Gruning BA, Erxleben A, Gunther S, Huttel W (2012) Genome sequence of the fungus Glarea lozoyensis: the first genome sequence of a species from the helotiaceae family (vol 11, pg 250, 2012). Eukaryot Cell 11:829CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Yu SZ, Huang D, Wen JP, Li S, Chen YL, Jia XQ (2012) Metabolic profiling of a Rhizopus oryzae fumaric acid production mutant generated by femtosecond laser irradiation. Bioresour Technol 114:610–615CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Ping Song
    • 1
    • 2
  • Kai Yuan
    • 2
  • Tingting Qin
    • 2
  • Ke Zhang
    • 2
  • Xiao-jun Ji
    • 2
  • Lujing Ren
    • 2
  • Rongfeng Guan
    • 3
  • Jianping Wen
    • 1
  • He Huang
    • 4
  1. 1.Department Biochemical Engineering, School Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
  3. 3.Laboratory for Advanced Technology in Environmental Protection of Jiangsu ProvinceYancheng Institute of TechnologyYanchengChina
  4. 4.School of Pharmaceutical SciencesNanjing Tech UniversityNanjingChina

Personalised recommendations