Skip to main content
Log in

Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor

  • Fermentation, Cell Culture and Bioengineering - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Utilization of renewable feedstocks for the production of bio-based bulk chemicals, such as 2,3-butanediol (2,3-BDO), by engineered strains of the non-pathogenic yeast, Saccharomyces cerevisiae, has recently become an attractive option. In this study, to realize rapid production of 2,3-BDO, a flocculent, 2,3-BDO-producing S. cerevisiae strain YPH499/dPdAdG/BDN6-10/FLO1 was constructed from a previously developed 2,3-BDO-producing strain. Continuous 2,3-BDO fermentation was carried out by the flocculent strain in an airlift bioreactor. The strain consumed more than 90 g/L of glucose, which corresponded to 90% of the input, and stably produced more than 30 g/L of 2,3-BDO over 380 h. The maximum 2,3-BDO productivity was 7.64 g/L/h at a dilution rate of 0.200/h, which was higher than the values achieved by continuous fermentation using pathogenic bacteria in the previous reports. These results demonstrate that continuous 2,3-BDO fermentation with flocculent 2,3-BDO-producing S. cerevisiae is a promising strategy for practical 2,3-BDO production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bialkowska AM (2016) Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 32:200

    Article  PubMed  Google Scholar 

  2. Bony M, Thines-Sempoux D, Barre P, Blondin B (1997) Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179:4929–4936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caro LH, Tettelin H, Vossen JH, Ram AF, van den Ende H, Klis FM (1997) In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489

    Article  CAS  PubMed  Google Scholar 

  4. Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol: current state and prospects. Biotechnol Adv 27:715–725

    Article  CAS  PubMed  Google Scholar 

  5. Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21:83–84

    Article  CAS  PubMed  Google Scholar 

  6. Couto SR, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569

    Article  CAS  PubMed  Google Scholar 

  7. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364

    Article  CAS  PubMed  Google Scholar 

  8. Jullesson D, David F, Pfleger B, Nielsen J (2015) Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 33:1395–1402

    Article  CAS  PubMed  Google Scholar 

  9. Kim JW, Kim J, Seo SO, Kim KH, Jin YS, Seo JH (2016) Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. Biotechnol Biofuels 9:265

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim S, Hahn JS (2015) Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab Eng 31:94–101

    Article  CAS  PubMed  Google Scholar 

  11. Kim SJ, Seo SO, Jin YS, Seo JH (2013) Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274–281

    Article  CAS  PubMed  Google Scholar 

  12. Lee HK, Maddox IS (1986) Continuous production of 2,3-butanediol from whey permeate using Klebsiella pneumoniae immobilized in calcium alginate. Enzyme Microb Technol 8:409–411

    Article  CAS  Google Scholar 

  13. Ng CY, Jung MY, Lee J, Oh MK (2012) Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 11:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nordström K (1968) Yeast growth and glycerol formation II. Carbon and redox balances. J Inst Brew 74:429–432

    Article  Google Scholar 

  15. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramachandran KB, Goma G (1987) Effect of oxygen supply and dilution rate on the production of 2,3-butanediol in continuous bioreactor by Klebsiella pneumoniae. Enzyme Microb Technol 9:107–111

    Article  CAS  Google Scholar 

  17. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latge JP, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190

    Article  PubMed  Google Scholar 

  20. Verbelen PJ, De Schutter DP, Delvaux F, Verstrepen KJ, Delvaux FR (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28:1515–1525

    Article  CAS  PubMed  Google Scholar 

  21. Westman JO, Mapelli V, Taherzadeh MJ, Franzen CJ (2014) Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production. Appl Environ Microbiol 80:6908–6918

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wong CL, Yen HW, Lin CL, Chang JS (2014) Effects of pH and fermentation strategies on 2,3-butanediol production with an isolated Klebsiella sp. Zmd30 strain. Bioresour Technol 152:169–176

    Article  CAS  PubMed  Google Scholar 

  23. Xie D, Shao Z, Achkar J, Zha W, Frost JW, Zhao H (2006) Microbial synthesis of triacetic acid lactone. Biotechnol Bioeng 93:727–736

    Article  CAS  PubMed  Google Scholar 

  24. Xue C, Zhao X-Q, Liu C-G, Chen L-J, Bai F-W (2013) Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 31:1575–1584

    Article  CAS  PubMed  Google Scholar 

  25. Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 9:32

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yamada R, Wakita K, Mitsui R, Nishikawa R, Ogino H (2017) Efficient production of 2,3-butanediol by recombinant Saccharomyces cerevisiae through modulation of gene expression by cocktail delta-integration. Bioresour Technol 245:1558–1566

    Article  CAS  PubMed  Google Scholar 

  27. Zeng A-P, Biebl H, Deckwer W-D (1990) 2,3-Butanediol production by Enterobacter aerogenes in continuous culture: role of oxygen supply. Appl Microbiol Biotechnol 33:264–268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A part of this work was supported by a New Chemical Technology Research Encouragement Award from the Japan Association for Chemical Innovation and by a Grant for Basic Science Research Projects from the Sumitomo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Ogino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, R., Nishikawa, R., Wakita, K. et al. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor. J Ind Microbiol Biotechnol 45, 305–311 (2018). https://doi.org/10.1007/s10295-018-2033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2033-5

Keywords

Navigation