Synthetic biology of polyketide synthases

  • Satoshi Yuzawa
  • Tyler W. H. Backman
  • Jay D. Keasling
  • Leonard Katz
Metabolic Engineering and Synthetic Biology - Original Paper

Abstract

Complex reduced polyketides represent the largest class of natural products that have applications in medicine, agriculture, and animal health. This structurally diverse class of compounds shares a common methodology of biosynthesis employing modular enzyme systems called polyketide synthases (PKSs). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we describe the chassis (hosts) that are used to assemble, express, and engineer the parts and devices to produce polyketides. We describe a recently developed software tool to design PKS system and provide an example of its use. Finally, we provide perspectives of what needs to be accomplished to fully realize the potential that synthetic biology approaches bring to this class of molecules.

Keywords

Biosynthesis Cheminformatics Natural products Novel chemicals Refactoring Streptomyces 

Notes

Acknowledgements

This work was supported by the Joint BioEnergy Institute, which is funded by the US Department of Energy (DOE), the Office of Science, Office of Biological and Environmental Research under Contract No. DE-AC02-05CH11231 between DOE and Lawrence Berkeley National Laboratory. The publisher, by accepting the article for publication, acknowledges that the US government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for US government purpose. The authors declare no competing financial interests.

References

  1. 1.
    Bai C, Zhang Y, Zhao X, Hu Y, Xiang S, Miao J, Lou C, Zhang L (2015) Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc Natl Acad Sci USA 112:12181–12186.  https://doi.org/10.1073/pnas.1511027112 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772.  https://doi.org/10.1007/s10295-010-0730-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD (2017) Engineered polyketides: synergy between protein and host level engineering. Synth Syst Biotechnol 2:147–166.  https://doi.org/10.1016/j.synbio.2017.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bayly CL, Yadav VG (2017) Towards precision engineering of canonical polyketide synthase domains: recent advances and future prospects. Molecules.  https://doi.org/10.3390/molecules22020235 PubMedGoogle Scholar
  5. 5.
    Beld J, Lee DJ, Burkart MD (2015) Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. Mol BioSyst 11:38–59.  https://doi.org/10.1039/c4mb00443d CrossRefPubMedGoogle Scholar
  6. 6.
    Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, StrLm AR, Valla S, Zotchev SB (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403CrossRefPubMedGoogle Scholar
  7. 7.
    Chang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH, Gerwick WH (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67:1356–1367.  https://doi.org/10.1021/np0499261 CrossRefPubMedGoogle Scholar
  8. 8.
    Chen AY, Schnarr NA, Kim CY, Cane DE, Khosla C (2006) Extender unit and acyl carrier protein specificity of ketosynthase domains of the 6-deoxyerythronolide B synthase. J Am Chem Soc 128:3067–3074.  https://doi.org/10.1021/ja058093d CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Du L, Lou L (2010) PKS and NRPS release mechanisms. Nat Prod Rep 27:255–278.  https://doi.org/10.1039/b912037h CrossRefPubMedGoogle Scholar
  10. 10.
    Dutton CJ, Gibson SP, Goudie AC, Holdom KS, Pacey MS, Ruddock JC, Bu’Lock JD, Richards MK (1991) Novel avermectins produced by mutational biosynthesis. J Antibiot (Tokyo) 44:357–365CrossRefGoogle Scholar
  11. 11.
    Eng CH, Backman TWH, Bailey CB, Magnan C, Garcia Martin H, Katz L, Baldi P, Keasling JD (2017) ClusterCAD: a computational platform for type I modular polyketide synthase design. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkx893 PubMedCentralGoogle Scholar
  12. 12.
    Eng CH, Yuzawa S, Wang G, Baidoo EE, Katz L, Keasling JD (2016) Alteration of polyketide stereochemistry from anti to syn by a ketoreductase domain exchange in a Type I modular polyketide synthase subunit. Biochemistry 55:1677–1680.  https://doi.org/10.1021/acs.biochem.6b00129 CrossRefPubMedGoogle Scholar
  13. 13.
    Gokhale RS (1999) Dissecting and exploiting intermodular communication in polyketide synthases. Science 284:482–485.  https://doi.org/10.1126/science.284.5413.482 CrossRefPubMedGoogle Scholar
  14. 14.
    Gomez-Escribano JP, Song L, Fox DJ, Yeo V, Bibb MJ, Challis GL (2012) Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3:2716.  https://doi.org/10.1039/c2sc20410j CrossRefGoogle Scholar
  15. 15.
    Hagen A, Poust S, de Rond T, Yuzawa S, Katz L, Adams PD, Petzold CJ, Keasling JD (2014) In vitro analysis of carboxyacyl substrate tolerance in the loading and first extension modules of borrelidin polyketide synthase. Biochemistry 53:5975–5977.  https://doi.org/10.1021/bi500951c CrossRefPubMedGoogle Scholar
  16. 16.
    Hagen A, Poust S, Rond T, Fortman JL, Katz L, Petzold CJ, Keasling JD (2016) Engineering a polyketide synthase for in vitro production of adipic acid. ACS Synth Biol 5:21–27.  https://doi.org/10.1021/acssynbio.5b00153 CrossRefPubMedGoogle Scholar
  17. 17.
    Helfrich EJ, Piel J (2016) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 33:231–316.  https://doi.org/10.1039/c5np00125k CrossRefPubMedGoogle Scholar
  18. 18.
    Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S (1999) Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci USA 96:9509–9514CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jiang H, Wang YY, Guo YY, Shen JJ, Zhang XS, Luo HD, Ren NN, Jiang XH, Li YQ (2015) An acyltransferase domain of FK506 polyketide synthase recognizing both an acyl carrier protein and coenzyme A as acyl donors to transfer allylmalonyl and ethylmalonyl units. FEBS J 282:2527–2539.  https://doi.org/10.1111/febs.13296 CrossRefPubMedGoogle Scholar
  20. 20.
    Keatinge-Clay AT (2016) Stereocontrol within polyketide assembly lines. Nat Prod Rep 33:141–149.  https://doi.org/10.1039/c5np00092k CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Keatinge-Clay AT (2017) The uncommon enzymology of cis-acyltransferase assembly lines. Chem Rev 117:5334–5366.  https://doi.org/10.1021/acs.chemrev.6b00683 CrossRefPubMedGoogle Scholar
  22. 22.
    Khosla C, Tang Y, Chen AY, Schnarr NA, Cane DE (2007) Structure and mechanism of the 6-deoxyerythronolide B synthase. Annu Rev Biochem 76:195–221.  https://doi.org/10.1146/annurev.biochem.76.053105.093515 CrossRefPubMedGoogle Scholar
  23. 23.
    Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich, UKGoogle Scholar
  24. 24.
    Klaus M, Ostrowski MP, Austerjost J, Robbins T, Lowry B, Cane DE, Khosla C (2016) Protein–protein interactions, not substrate recognition, dominate the turnover of chimeric assembly line polyketide synthases. J Biol Chem 291:16404–16415.  https://doi.org/10.1074/jbc.M116.730531 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kwan DH, Leadlay PF (2010) Mutagenesis of a modular polyketide synthase enoylreductase domain reveals insights into catalysis and stereospecificity. ACS Chem Biol 5:829–838.  https://doi.org/10.1021/cb100175a CrossRefPubMedGoogle Scholar
  26. 26.
    Liu Z, Liang Y, Ang EL, Zhao H (2017) A new era of genome integration-simply cut and paste! ACS Synth Biol 6:601–609.  https://doi.org/10.1021/acssynbio.6b00331 CrossRefPubMedGoogle Scholar
  27. 27.
    Marsden AFA, Caffrey P, Aparicio JF, Loughran MS, Staunton J, Leadlay PF (1994) Stereospecific acyl transfers on the erythromycin-producing polyketide synthase. Science 263:378–380.  https://doi.org/10.1126/science.8278811 CrossRefPubMedGoogle Scholar
  28. 28.
    McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Betlach M, Ashley G (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel ‘‘unnatural’’ natural products. Proc Natl Acad Sci USA 96:1846–1851CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Menzella HG, Carney JR, Santi DV (2007) Rational design and assembly of synthetic trimodular polyketide synthases. Chem Biol 14:143–151.  https://doi.org/10.1016/j.chembiol.2006.12.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176.  https://doi.org/10.1038/nbt1128 CrossRefPubMedGoogle Scholar
  31. 31.
    Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19:70–99.  https://doi.org/10.1039/b003939j CrossRefPubMedGoogle Scholar
  32. 32.
    Motamedi H, Shafiee A (1998) The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur J Biochem 256:528–534CrossRefPubMedGoogle Scholar
  33. 33.
    Murphy AC, Hong H, Vance S, Broadhurst RW, Leadlay PF (2016) Broadening substrate specificity of a chain-extending ketosynthase through a single active-site mutation. Chem Commun 52:8373–8376.  https://doi.org/10.1039/c6cc03501a CrossRefGoogle Scholar
  34. 34.
    Oliynyk M, Stark CBW, Bhatt A, Jones MA, Hughes-Thomas ZA, Wilkinson C, Oliynyk Z, Demydchuk Y, Staunton J, Leadlay PF (2003) Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol Microbiol 49:1179–1190.  https://doi.org/10.1046/j.1365-2958.2003.03571.x CrossRefPubMedGoogle Scholar
  35. 35.
    Patel K, Piagentini M, Rascher A, Tian ZQ, Buchanan GO, Regentin R, Hu Z, Hutchinson CR, McDaniel R (2004) Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chem Biol 11:1625–1633.  https://doi.org/10.1016/j.chembiol.2004.09.012 CrossRefPubMedGoogle Scholar
  36. 36.
    Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG, Reider Apel A, Rasor BJ, Katz L, Keasling JD (2017) Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth Biol 6:159–166.  https://doi.org/10.1021/acssynbio.6b00202 CrossRefPubMedGoogle Scholar
  37. 37.
    Poust S, Phelan RM, Deng K, Katz L, Petzold CJ, Keasling JD (2015) Divergent mechanistic routes for the formation of gem-dimethyl groups in the biosynthesis of complex polyketides. Angew Chem Int Ed Engl 54:2370–2373.  https://doi.org/10.1002/anie.201410124 CrossRefPubMedGoogle Scholar
  38. 38.
    Robbins T, Liu YC, Cane DE, Khosla C (2016) Structure and mechanism of assembly line polyketide synthases. Curr Opin Struct Biol 41:10–18.  https://doi.org/10.1016/j.sbi.2016.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Schwecke T, Aparicio JF, Molnar I, Konig A, Khaw LE, Haydock SF, Oliynyk M, Caffrey P, Cortes J, Lester JB et al (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci USA 92:7839–7843CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Silakowski B, Nordsiek G, Kunze B, Blocker H, Muller R (2001) Novel features in a combined polyketide synthase/non-ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15. Chem Biol 8:59–69.  https://doi.org/10.1016/S1074-5521(00)00056-9 CrossRefPubMedGoogle Scholar
  41. 41.
    Staunton J, Caffrey P, Aparicio JF, Roberts GA, Bethell SS, Leadlay PF (1996) Evidence for a double-helical structure for modular polyketide synthases. Nat Struct Biol 3:188–192CrossRefPubMedGoogle Scholar
  42. 42.
    Sun Y, Zhou X, Dong H, Tu G, Wang M, Wang B, Deng Z (2003) A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin. Chem Biol 10:431–441.  https://doi.org/10.1016/s1074-5521(03)00092-9 CrossRefPubMedGoogle Scholar
  43. 43.
    Valenzano CR, You YO, Garg A, Keatinge-Clay A, Khosla C, Cane DE (2010) Stereospecificity of the dehydratase domain of the erythromycin polyketide synthase. J Am Chem Soc 132:14697–14699.  https://doi.org/10.1021/ja107344h CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Weissman KJ (2016) Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 33:203–230.  https://doi.org/10.1039/c5np00109a CrossRefPubMedGoogle Scholar
  45. 45.
    Weissman KJ, Timoney M, Bycroft M, Grice P, Hanefeld U, Staunton J, Leadlay PF (1997) The molecular basis of Celmer’s rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. Biochemistry 36:13849–13855.  https://doi.org/10.1021/bi971566b CrossRefPubMedGoogle Scholar
  46. 46.
    Wilson MC, Moore BS (2012) Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat Prod Rep 29:72–86.  https://doi.org/10.1039/c1np00082a CrossRefPubMedGoogle Scholar
  47. 47.
    Wlodek A, Kendrew SG, Coates NJ, Hold A, Pogwizd J, Rudder S, Sheehan LS, Higginbotham SJ, Stanley-Smith AE, Warneck T, Nur EAM, Radzom M, Martin CJ, Overvoorde L, Samborskyy M, Alt S, Heine D, Carter GT, Graziani EI, Koehn FE, McDonald L, Alanine A, Rodriguez Sarmiento RM, Chao SK, Ratni H, Steward L, Norville IH, Sarkar-Tyson M, Moss SJ, Leadlay PF, Wilkinson B, Gregory MA (2017) Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat Commun 8:1206.  https://doi.org/10.1038/s41467-017-01344-3 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wu N, Tsuji SY, Cane DE, Khosla C (2001) Assessing the balance between protein–protein interactions and enzyme-substrate interactions in the channeling of intermediates between polyketide synthase modules. J Am Chem Soc 123:6465–6474CrossRefPubMedGoogle Scholar
  49. 49.
    Xie X, Garg A, Khosla C, Cane DE (2017) Elucidation of the cryptic methyl group epimerase activity of dehydratase domains from modular polyketide synthases using a tandem modules epimerase assay. J Am Chem Soc 139:9507–9510.  https://doi.org/10.1021/jacs.7b05502 CrossRefPubMedGoogle Scholar
  50. 50.
    Xie X, Khosla C, Cane DE (2017) Elucidation of the stereospecificity of C-methyltransferases from trans-AT polyketide synthases. J Am Chem Soc 139:6102–6105.  https://doi.org/10.1021/jacs.7b02911 CrossRefPubMedGoogle Scholar
  51. 51.
    Yuzawa S, Deng K, Wang G, Baidoo EE, Northen TR, Adams PD, Katz L, Keasling JD (2017) Comprehensive in vitro analysis of acyltransferase domain exchanges in modular polyketide synthases and its application for short-chain ketone production. ACS Synth Biol 6:139–147.  https://doi.org/10.1021/acssynbio.6b00176 CrossRefPubMedGoogle Scholar
  52. 52.
    Yuzawa S, Eng CH, Katz L, Keasling JD (2013) Broad substrate specificity of the loading didomain of the lipomycin polyketide synthase. Biochemistry 52:3791–3793.  https://doi.org/10.1021/bi400520t CrossRefPubMedGoogle Scholar
  53. 53.
    Yuzawa S, Eng CH, Katz L, Keasling JD (2014) Enzyme analysis of the polyketide synthase leads to the discovery of a novel analog of the antibiotic alpha-lipomycin. J Antibiot (Tokyo) 67:199–201.  https://doi.org/10.1038/ja.2013.110 CrossRefGoogle Scholar
  54. 54.
    Zheng J, Fage CD, Demeler B, Hoffman DW, Keatinge-Clay AT (2013) The missing linker: a dimerization motif located within polyketide synthase modules. ACS Chem Biol 8:1263–1270.  https://doi.org/10.1021/cb400047s CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Satoshi Yuzawa
    • 1
    • 2
  • Tyler W. H. Backman
    • 1
    • 2
    • 3
  • Jay D. Keasling
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Leonard Katz
    • 2
    • 3
  1. 1.Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Joint BioEnergy InstituteEmeryvilleUSA
  3. 3.QB3 InstituteUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA
  5. 5.Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyUSA
  6. 6.Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkHørsholmDenmark

Personalised recommendations