Madurastatin B3, a rare aziridine derivative from actinomycete Nocardiopsis sp. LS150010 with potent anti-tuberculosis activity

Natural Products - Original Paper


Since the discovery of the first antibiotic, natural products have played an important role in chemistry, biology and medicine. To explore the potential of bioactive compounds from microbes isolated from the southeast of Tibet, China, a crude extract library was constructed and screened against Staphylococcus aureus. The strain Nocardiopsis sp. LS150010 was scaled up and subjected to further chemical studies, resulting in the identification of N-salicyloyl-2-aminopropan-1,3-diol (2) and its rare aziridine derivative, madurastatin B3 (1). Their structures were determined by detailed analysis of 1D, 2D NMR and HRMS data. Compounds 1 and 2 displayed significant inhibitory activity against S. aureus and methicillin resistant S. aureus, with MIC values of 6.25 µg/mL. Compound 1 also showed potent inhibitory activity against Bacillus subtilis and Escherichia coli, as well as activity in a Mycobacterium tuberculosis Bacillus Calmette-Guérin infected THP-1 cell model.


Aziridine derivative Methicillin resistant Staphylococcus aureus Bacillus Calmette-Guérin Nocardiopsis sp. LS150010 



This work was partly supported by the Special Training Program for the Professional and Technical Personnel of Tibet Minority Nationality, the Natural Science Foundation of Science and Technology Department of Tibet (2015ZR-14-29), the Natural Science Foundation of China (31430002, 31320103911, 31260005, 31400090, 81302678 and 31125002), and the Ministry of Science and Technology of the People’s Republic of China (2011ZX09102-011-11, 2013ZX10005004-005), China Ocean Mineral Resources R & D Association (Grant No. DY125-15-T-07), and the European Union’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 312184. LZ is an awardee for the National Distinguished Young Scholar Program in China.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10295_2017_1908_MOESM1_ESM.doc (568 kb)
Supplementary material 1 (DOC 567 kb)


  1. 1.
    Beutler JA (2009) Natural products as a foundation for drug discovery. Curr Protoc Pharmacol 46:9.11.1–9.11.21. doi: 10.1002/0471141755.ph0911s46
  2. 2.
    Changsen C, Franzblau SG, Palittapongarnpim P (2003) Improved green fluorescent protein reporter gene-based microplate screening for antituberculosis compounds by utilizing an acetamidase promoter. Antimicrob Agents Chemother 47(12):3682–3687. doi: 10.1128/AAC.47.12.3682-3687.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cowley SC, Av-Gay Y (2001) Monitoring promoter activity and protein localization in Mycobacterium spp. using green fluorescent protein. Gene 264(2):225–231. doi: 10.1016/S0378-1119(01)00336-5 CrossRefPubMedGoogle Scholar
  4. 4.
    David B, Wolfender JL, Dias A (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14(2):299–315. doi: 10.1007/s11101-014-9367-z CrossRefGoogle Scholar
  5. 5.
    Genilloud O (2014) The re-emerging role of microbial natural products in antibiotic discovery. Antonie Van Leeuwenhoek 106(1):173–188. doi: 10.1007/s10482-014-0204-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Harada K, Tomita K, Fujii K, Masuda K, Mikami Y, Yazawa K, Komaki H (2004) Isolation and structural characterization of siderophores, madurastatins, produced by a pathogenic Actinomadura madurae. J Antibiot 57(2):125–135. doi: 10.1007/s10295-016-1788-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Hossain MS, Hossain MA, Rahman MM, Mondol MAM, Bhuiyan MSA, Gray AI, Flores ME, Rashid MA (2004) Amides from the fungus Streptomyces hygroscopicus and their antimicrobial activity. Phytochemistry 65(14):2147–2151. doi: 10.1016/j.phytochem.2004.06.010 CrossRefPubMedGoogle Scholar
  8. 8.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application toproliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  9. 9.
    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661. doi: 10.1021/acs.jnatprod.5b01055 CrossRefPubMedGoogle Scholar
  10. 10.
    Prata-Sena M, Ramos AA, Buttachon S, Castro-Carvalho B, Marques P, Dethoup T, Kijjoa A, Rocha E (2016) Cytotoxic activity of secondary metabolites from marine-derived fungus Neosartorya siamensis in human cancer cells. Phytother Res 30(11):1862–1871. doi: 10.1002/ptr.5696 CrossRefPubMedGoogle Scholar
  11. 11.
    Shen B (2015) A new golden age of natural products drug discovery. Cell 163(6):1297–1300. doi: 10.1016/j.cell.2015.11.031 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Song F, Liu X, Guo H, Ren B, Chen C, Piggott AM, Yu K, Gao H, Wang Q, Liu M, Liu X, Dai H, Zhang L, Capon RJ (2012) Brevianamides with antitubercular potential from a marine-derived isolate of Aspergillus versicolor. Org Lett 14(18):4770–4773. doi: 10.1021/ol302051x CrossRefPubMedGoogle Scholar
  13. 13.
    Song F, Ren B, Chen C, Yu K, Yu K, Liu X, Zhang Y, Yang N, He H, Liu X, Dai H, Zhang L (2014) Three new sterigmatocystin analogues from marine-derived fungus Aspergillus versicolor MF359. Appl Microbiol Biotechnol 98(8):3753–3758. doi: 10.1007/s00253-013-5409-5 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Q, Song F, Xiao X, Huang P, Li L, Monte A, Abdel-Mageed WM, Wang J, Guo H, He W, Xie F, Dai H, Liu M, Chen C, Xu H, Liu M, Piggott AM, Liu X, Capon RJ, Zhang L (2013) Abyssomicins from the South China Sea deep-sea sediment Verrucosispora sp.: natural thioether michael addition adducts as antitubercular prodrugs. Angew Chem Int Ed Engl 52(4):1231–1234. doi: 10.1002/anie.201208801 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2017

Authors and Affiliations

  • Xinjun Zhang
    • 1
    • 5
  • Hongtao He
    • 2
  • Rong Ma
    • 2
  • Zengchun Ji
    • 2
    • 4
  • Qi Wei
    • 2
    • 6
  • Huanqin Dai
    • 2
  • Lixin Zhang
    • 2
    • 3
  • Fuhang Song
    • 2
  1. 1.Institute of Tibet Plateau Ecology, Agricultural and Animal Husbandry CollegeTibet UniversityLinzhiPeople’s Republic of China
  2. 2.CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  4. 4.School of Biological EngineeringTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  5. 5.National Forest Ecosystem Observation and Research Station of TibetLinzhiPeople’s Republic of China
  6. 6.College of Life SciencesHebei UniversityBaodingPeople’s Republic of China

Personalised recommendations