Advertisement

Engineering deacetoxycephalosporin C synthase as a catalyst for the bioconversion of penicillins

  • Keqiang Fan
  • Baixue Lin
  • Yong Tao
  • Keqian Yang
Biocatalysis - Review

Abstract

7-aminodeacetoxycephalosporanic acid (7-ADCA) is a key intermediate of many clinically useful semisynthetic cephalosporins that were traditionally prepared by processes involving chemical ring expansion of penicillin G. Bioconversion of penicillins to cephalosporins using deacetoxycephalosporin C synthase (DAOCS) is an alternative and environmentally friendly process for 7-ADCA production. Arnold Demain and co-workers pioneered such a process. Later, protein engineering efforts to improve the substrate specificity and catalytic efficiency of DAOCS for penicillins have been made by many groups, and a whole cell process using Escherichia coli for bioconversion of penicillins has been developed.

Keywords

Deacetoxycephalosporin C synthase (DAOCS) Penicillin expandase 7-aminodeacetoxycephalosporanic acid (7-ADCA) Bioconversion Penicillin G 

References

  1. 1.
    Báez-Vásquez MA, Adrio JL, Piret JM, Demain AL (1999) Further studies on the bioconversion of penicillin G into deacetoxycephalosporin G by resting cells of Streptomyces clavuligerus NP-1. Appl Biochem Biotechnol 81:145–152CrossRefPubMedGoogle Scholar
  2. 2.
    Baldwin JE, Crabbe MJ (1987) A spectrophotometric assay for deacetoxycephalosporin C synthase. FEBS Lett 214:357–361CrossRefPubMedGoogle Scholar
  3. 3.
    Baldwin JE, Adlington RM, Coates JB, Crabbe MJ, Crouch NP, Keeping JW, Knight GC, Schofield CJ, Ting HH, Vallejo CA (1987) Purification and initial characterization of an enzyme with deacetoxycephalosporin C synthetase and hydroxylase activities. Biochem J 245:831–841CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cantwell CA, Beckmann RJ, Dotzlaf JE, Fisher DL, Skatrud PL, Yeh WK, Queener SW (1990) Cloning and expression of a hybrid Streptomyces clavuligerus cefE gene in Penicillium chrysogenum. Curr Genet 17:213–221CrossRefPubMedGoogle Scholar
  5. 5.
    Chin HS, Goo K-S, Sim T-S (2004) A complete library of amino acid alterations at N304 in Streptomyces clavuligerus deacetoxycephalosporin C synthase elucidates the basis for enhanced penicillin analogue conversion. Appl Environ Microbiol 70:607–609. doi: 10.1128/AEM.70.1.607 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chin HS, Sim J, Sim T-S (2001) Mutation of N304 to leucine in Streptomyces clavuligerus deacetoxycephalosporin C synthase creates an enzyme with increased penicillin analogue conversion. Biochem Biophys Res Commun 287:507–513. doi: 10.1006/bbrc.2001.5552 CrossRefPubMedGoogle Scholar
  7. 7.
    Chin HS, Sim T-S (2002) C-terminus modification of Streptomyces clavuligerus deacetoxycephalosporin C synthase improves catalysis with an expanded substrate specificity. Biochem Biophys Res Commun 295:55–61CrossRefPubMedGoogle Scholar
  8. 8.
    Cho H, Adrio JL, Luengo JM, Wolfe S, Ocran S, Hintermann G, Piret JM, Demain AL (1998) Elucidation of conditions allowing conversion of penicillin G and other penicillins to deacetoxycephalosporins by resting cells and extracts of Streptomyces clavuligerus NP1. Proc Natl Acad Sci USA 95:11544–11548CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Coque JJ, Martín JF, Liras P (1993) Characterization and expression in Streptomyces lividans of cefD and cefE genes from Nocardia lactamdurans: the organization of the cephamycin gene cluster differs from that in Streptomyces clavuligerus. Mol Gen Genet 236:453–458CrossRefPubMedGoogle Scholar
  10. 10.
    Cortés J, Martín JF, Castro JM, Láiz L, Liras P (1987) Purification and characterization of a 2-oxoglutarate-linked ATP-independent deacetoxycephalosporin C synthase of Streptomyces lactamdurans. J Gen Microbiol 133:3165–3174. doi: 10.1099/00221287-133-11-3165 PubMedGoogle Scholar
  11. 11.
    Crawford L, Stepan AM, McAda PC, Rambosek JA, Conder MJ, Vinci VA, Reeves CD (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Biotechnology (N Y) 13:58–62CrossRefGoogle Scholar
  12. 12.
    Dotzlaf JE, Yeh WK (1987) Copurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium. J Bacteriol 169:1611–1618CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dotzlaf JE, Yeh WK (1989) Purification and properties of deacetoxycephalosporin C synthase from recombinant Escherichia coli and its comparison with the native enzyme purified from Streptomyces clavuligerus. J Biol Chem 264:10219–10227PubMedGoogle Scholar
  14. 14.
    Fernández M-J, Adrio JL, Piret JM, Wolfe S, Ro S, Demain AL (1999) Stimulatory effect of growth in the presence of alcohols on biotransformation of penicillin G into cephalosporin-type antibiotics by resting cells of Streptomyces clavuligerus NP1. Appl Microbiol Biotechnol 52:484–488. doi: 10.1007/s002530051549 CrossRefPubMedGoogle Scholar
  15. 15.
    Fu J, Zhao J, Lin B, Xu Y, Tao Y (2014) Optimization of whole-cell biocatalysis for phenylacetyl-7-aminodeacetoxycephalosporanic acid production. Chin J Biotechnol 30:1782–1786. doi: 10.13345/j.cjb.140105 Google Scholar
  16. 16.
    Gao Q, Demain AL (2001) Improvement in the bioconversion of penicillin G to deacetoxycephalosporin G by elimination of agitation and addition of decane. Appl Microbiol Biotechnol 57:511–513CrossRefPubMedGoogle Scholar
  17. 17.
    Gao Q, Demain AL (2002) Improvement in the resting-cell bioconversion of penicillin G to deacetoxycephalosporin G by addition of catalase. Lett Appl Microbiol 34:290–292CrossRefPubMedGoogle Scholar
  18. 18.
    Gao Q, Piret JM, Adrio JL, Demain AL (2003) Performance of a recombinant strain of Streptomyces lividans for bioconversion of penicillin G to deacetoxycephalosporin G. J Ind Microbiol Biotechnol 30:190–194. doi: 10.1007/s10295-003-0034-4 CrossRefPubMedGoogle Scholar
  19. 19.
    Gao Q, Demain AL (2001) Effect of solvents on bioconversion of penicillin G to deacetoxycephalosporin G. J Antibiot (Tokyo) 54:958–961CrossRefGoogle Scholar
  20. 20.
    Goo K-S, Chua C-S, Sim T-S (2009) Directed evolution and rational approaches to improving Streptomyces clavuligerus deacetoxycephalosporin C synthase for cephalosporin production. J Ind Microbiol Biotechnol 36:619–633. doi: 10.1007/s10295-009-0549-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Goo K-S, Chua C-S, Sim T (2008) A complete library of amino acid alterations at R306 in Streptomyces clavuligerus deacetoxycephalosporin C synthase demonstrates its structural role in the ring-expansion activity. Proteins 70:739–747. doi: 10.1002/prot.21549 Google Scholar
  22. 22.
    Hsu J, Yang Y, Deng C, Wei C, Liaw S, Tsai Y (2004) Family shuffling of expandase genes to enhance substrate specificity for penicillin G. Appl Environ Microbiol 70:6257–6263. doi: 10.1128/AEM.70.10.6257-6263.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jensen SE, Westlake DW, Wolfe S (1985) Deacetoxycephalosporin C synthetase and deacetoxycephalosporin C hydroxylase are two separate enzymes in Streptomyces clavuligerus. J Antibiot (Tokyo) 38:263–265. doi: 10.1099/00221287-133-11-3165 CrossRefGoogle Scholar
  24. 24.
    Ji J, Fan K, Tian X, Zhang X, Zhang Y, Yang K (2012) Iterative combinatorial mutagenesis as an effective strategy for generation of deacetoxycephalosporin C synthase with improved activity toward penicillin G. Appl Environ Microbiol 78:7809–7812. doi: 10.1128/AEM.02122-12 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ji J, Tian X, Fan K, Yang K (2012) New strategy of site-directed mutagenesis identifies new sites to improve Streptomyces clavuligerus deacetoxycephalosporin C synthase activity toward penicillin G. Appl Microbiol Biotechnol 93:2395–2401. doi: 10.1007/s00253-011-3566-y CrossRefPubMedGoogle Scholar
  26. 26.
    Kohsaka M, Demain AL (1976) Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem Biophys Res Commun 70:465–473CrossRefPubMedGoogle Scholar
  27. 27.
    Kovacevic S, Weigel BJ, Tobin MB, Ingolia TD, Miller JR (1989) Cloning, characterization, and expression in Escherichia coli of the Streptomyces clavuligerus gene encoding deacetoxycephalosporin C synthetase. J Bacteriol 171:754–760CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee HJ, Lloyd MD, Clifton IJ, Harlos K, Dubus A, Baldwin JE, Frere JM, Schofield CJ (2001) Alteration of the co-substrate selectivity of deacetoxycephalosporin C synthase. The role of arginine 258. J Biol Chem 276:18290–18295. doi: 10.1074/jbc.M100085200 CrossRefPubMedGoogle Scholar
  29. 29.
    Lee H-J, Dai Y-F, Shiau C-Y, Schofield CJ, Lloyd MD (2003) The kinetic properties of various R258 mutants of deacetoxycephalosporin C synthase. Eur J Biochem 270:1301–1307. doi: 10.1046/j.1432-1033.2003.03500.x CrossRefPubMedGoogle Scholar
  30. 30.
    Lin B, Fan K, Zhao J, Ji J, Wu L, Yang K, Tao Y (2015) Reconstitution of TCA cycle with DAOCS to engineer Escherichia coli into an efficient whole cell catalyst of penicillin G. Proc Natl Acad Sci USA 112:9855–9859. doi: 10.1073/pnas.1502866112 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Maeda K, Luengo JM, Ferrero O, Wolfe S, Lebedev MY, Fang A, Demain AL (1995) The substrate specificity of deacetoxycephalosporin C synthase (“expandase”) of Streptomyces clavuligerus is extremely narrow. Enzyme Microb Technol 17:231–234CrossRefGoogle Scholar
  32. 32.
    Queener SW, Beckmann RJ, Cantwell CA, Hodges RL, Fisher DL, Dotzlaf JE, Yeh WK, McGilvray D, Greaney M, Rosteck P (1994) Improved expression of a hybrid Streptomyces clavuligerus cefE gene in Penicillium chrysogenum. Ann N Y Acad Sci 721:178–193CrossRefPubMedGoogle Scholar
  33. 33.
    Rollins MJ, Westlake DW, Wolfe S, Jensen SE (1988) Purification and initial characterization of deacetoxycephalosporin C synthase from Streptomyces clavuligerus. Can J Microbiol 34:1196–1202CrossRefPubMedGoogle Scholar
  34. 34.
    Samson SM, Dotzlaf JE, Slisz ML, Becker GW, Van Frank RM, Veal LE, Yeh WK, Miller JR, Queener SW, Ingolia TD (1987) Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. Nat Biotechnol 5:1207–1214. doi: 10.1038/nbt1187-1207 CrossRefGoogle Scholar
  35. 35.
    Shen Y-Q, Wolfe S, Demain AL (1984) Desacetoxycephalosporin C synthetase: Importance of order of cofactor/reactant addition. Enzyme Microb Technol 6:402–404. doi: 10.1016/0141-0229(84)90013-9 CrossRefGoogle Scholar
  36. 36.
    Tarhonskaya H, Szöllössi A, Leung IKH, Bush JT, Henry L, Chowdhury R, Iqbal A, Claridge TDW, Schofield CJ, Flashman E (2014) Studies on deacetoxycephalosporin C synthase support a consensus mechanism for 2-oxoglutarate dependent oxygenases. Biochemistry 53:2483–2493. doi: 10.1021/bi500086p CrossRefPubMedGoogle Scholar
  37. 37.
    Valegård K, van Scheltinga AC, Lloyd MD, Hara T, Ramaswamy S, Perrakis A, Thompson A, Lee HJ, Baldwin JE, Schofield CJ, Hajdu J, Andersson I (1998) Structure of a cephalosporin synthase. Nature 394:805–809. doi: 10.1038/29575 CrossRefPubMedGoogle Scholar
  38. 38.
    Valegård K, van Scheltinga AC, Dubus A, Ranghino G, Oster LM, Hajdu J, Andersson I (2004) The structural basis of cephalosporin formation in a mononuclear ferrous enzyme. Nat Struct Mol Biol 11:95–101. doi: 10.1038/nsmb712 CrossRefPubMedGoogle Scholar
  39. 39.
    Velasco J, Adrio JL, Moreno MÁ, Díez B, Soler G, Barredo JL (2000) Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nat Biotechnol 18:857–861. doi: 10.1038/78467 CrossRefPubMedGoogle Scholar
  40. 40.
    Wei C, Yang Y, Deng C, Liu W, Hsu J-S, Lin Y-C, Liaw S-H, Tsai Y-C (2005) Directed evolution of Streptomyces clavuligerus deacetoxycephalosporin C synthase for enhancement of penicillin G expansion. Appl Environ Microbiol 71:8873–8880. doi: 10.1128/AEM.71.12.8873-8880.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wei C-L, Yang Y-B, Wang W-C, Liu W-C, Hsu J-S, Tsai Y-C (2003) Engineering Streptomyces clavuligerus deacetoxycephalosporin C synthase for optimal ring expansion activity toward penicillin G. Appl Environ Microbiol 69:2306–2312. doi: 10.1128/AEM.69.4.2306-2312.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yoshida M, Konomi T, Kohsaka M, Baldwin JE, Herchen S, Singh P, Hunt NA, Demain AL (1978) Cell-free ring expansion of penicillin N to deacetoxycephalosporin C by Cephalosporium acremonium CW-19 and its mutants. Proc Natl Acad Sci USA 75:6253–6257CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • Keqiang Fan
    • 1
  • Baixue Lin
    • 2
  • Yong Tao
    • 2
  • Keqian Yang
    • 1
  1. 1.State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.ASCR Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations