Advertisement

δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS): discovery and perspectives

Genetics and Molecular Biology of Industrial Organisms - Review

Abstract

The δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine (ACV) tripeptide is the first dedicated intermediate in the biosynthetic pathway leading to the penicillin and cephalosporin classes of β-lactam natural products in bacteria and fungi. It is synthesized nonribosomally by the ACV synthetase (ACVS) enzyme, which has been purified and partially characterized from many sources. Due to its large size and instability, many details regarding the reaction mechanism of ACVS are still not fully understood. In this review we discuss the chronology and associated methodology that led to the discovery of ACVS, some of the main findings regarding its activities, and some recent/current studies being conducted on the enzyme. In addition, we conclude with perspectives on what can be done to increase our understating of this very important protein in the future.

Keywords

β-lactams Penicillin Cephalosporin ACVS Streptomyces Protein purification 

Notes

Acknowledgments

This paper is dedicated to Professor A. L. Demain to mark the occasion of his 90th birthday. Throughout his career, Arnie has started many young scientists on their way, supported many established scientists in their research efforts, and made outstanding contributions to many areas of industrial microbiology through his own studies. He is an inspiration to us all. Work on β-lactams in KT’s laboratory at Memorial University of Newfoundland (MUN) is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). MAM was the recipient of a student fellowship from NSERC and also received support from MUN for completing his program. We would also like to thank Dr. T. Martin Schmeing (Department of Biochemistry, McGill University, Canada) for advice on designing affinity tags for purifying large proteins.

References

  1. 1.
    Adriaens P, Meesschaert B, Wuyts W, Vanderhaeghe H, Eyssen H (1975) Presence of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine in fermentations of Penicillium chrysogenum. Antimicrob Agents Chemother 8:638–642CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aharonowitz Y, Cohen G, Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46:461–495CrossRefPubMedGoogle Scholar
  3. 3.
    Alexander DC, Jensen SE (1998) Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J Bacteriol 180:4068–4079PubMedPubMedCentralGoogle Scholar
  4. 4.
    Arnstein HR, Morris D, Toms EJ (1959) Isolation of a tripeptide containing alpha-aminoadipic acid from the mycelium of Penicillium chrysogenum and its possible significance in penicillin biosynthesis. Biochim Biophys Acta 35:561–562CrossRefPubMedGoogle Scholar
  5. 5.
    Baldwin JE, Bird JW, Field RA, O’Callaghan NM, Schofield CJ (1990) Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. J Antibiot (Tokyo) 43:1055–1057CrossRefGoogle Scholar
  6. 6.
    Baldwin JE, Bird JW, Field RA, O’Callaghan NM, Schofield CJ, Willis AC (1991) Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. Evidence for the presence of phosphopantothenate in ACV synthetase. J Antibiot (Tokyo) 44:241–248CrossRefGoogle Scholar
  7. 7.
    Baldwin JE, Herchen SR, Johnson BL, Jung M, Usher JJ, Wan T (1981) Synthesis of δ-(l-α-aminoadipoyl)-l-cysteinyl-d-valine and some carbon-13 and nitrogen-15 labelled isotopomers. J Chem Soc, Perkin Trans 1:2253–2257CrossRefGoogle Scholar
  8. 8.
    Baldwin JE, Shiau CY, Byford MF, Schofield CJ (1994) Substrate specificity of l-delta-(alpha-aminoadipoyl)-l-cysteinyl-d-valine synthetase from Cephalosporium acremonium: demonstration of the structure of several unnatural tripeptide products. Biochem J 301(Pt 2):367–372CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Banko G, Wolfe S, Demain AL (1986) Cell-free synthesis of delta-(l-alpha-aminoadipyl)-l-cysteine, the first intermediate of penicillin and cephalosporin biosynthesis. Biochem Biophys Res Commun 137:528–535CrossRefPubMedGoogle Scholar
  10. 10.
    Bibb MJ, Janssen GR, Ward JM (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38:215–226CrossRefPubMedGoogle Scholar
  11. 11.
    Bloudoff K, Rodionov D, Schmeing TM (2013) Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases. J Mol Biol 425:3137–3150CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bodner MJ, Li R, Phelan RM, Freeman MF, Moshos KA, Lloyd EP, Townsend CA (2011) Definition of the common and divergent steps in carbapenem β-lactam antibiotic biosynthesis. ChemBioChem 12:2159–2165CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the nonribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Coque JJ, de la Fuente JL, Liras P, Martin JF (1996) Overexpression of the Nocardia lactamdurans alpha-aminoadipyl-cysteinyl-valine synthetase in Streptomyces lividans. The purified multienzyme uses cystathionine and 6-oxopiperidine 2-carboxylate as substrates for synthesis of the tripeptide. Eur J Biochem 242:264–270CrossRefPubMedGoogle Scholar
  15. 15.
    Coque JJ, Martin JF, Calzada JG, Liras P (1991) The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum. Mol Microbiol 5:1125–1133CrossRefPubMedGoogle Scholar
  16. 16.
    Fawcett PA, Usher JJ, Huddleston JA, Bleaney RC, Nisbet JJ, Abraham EP (1976) Synthesis of delta-(alpha-aminoadipyl)-cysteinyl-valine and its role in penicillin biosynthesis. Biochem J 157:651–660CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fierro F, Barredo JL, Diez B, Gutierrez S, Fernandez FJ, Martin JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92:6200–6204CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gaudelli NM, Long DH, Townsend CA (2015) β-Lactam formation by a nonribosomal peptide synthetase during antibiotic biosynthesis. Nature 520:383–387CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hochuli E (1988) Large-scale chromatography of recombinant proteins. J Chromatogr 444:293–302CrossRefPubMedGoogle Scholar
  20. 20.
    Jensen SE (2012) Biosynthesis of clavam metabolites. J Ind Microbiol Biotechnol 39:1407–1419CrossRefPubMedGoogle Scholar
  21. 21.
    Jensen SE, Westlake DWS, Wolfe S (1988) Production of the penicillin precursor δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine (ACV) by cell-free extracts from Streptomyces clavuligerus. FEMS Microbiol Lett 49:213–218Google Scholar
  22. 22.
    Jensen SE, Wong A, Rollins MJ, Westlake DW (1990) Purification and partial characterization of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase from Streptomyces clavuligerus. J Bacteriol 172:7269–7271CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  24. 24.
    Kallow W, Kennedy J, Arezi B, Turner G, von Dohren H (2000) Thioesterase domain of delta-(l-alpha-Aminoadipyl)-l-cysteinyl-d-valine synthetase: alteration of stereospecificity by site-directed mutagenesis. J Mol Biol 297:395–408CrossRefPubMedGoogle Scholar
  25. 25.
    Keller U (1987) Actinomycin synthetases. Multifunctional enzymes responsible for the synthesis of the peptide chains of actinomycin. J Biol Chem 262:5852–5856PubMedGoogle Scholar
  26. 26.
    Keller U, Kleinkauf H, Zocher R (1984) 4-Methyl-3-hydroxyanthranilic acid activating enzyme from actinomycin-producing Streptomyces chrysomallus. Biochemistry 23:1479–1484CrossRefPubMedGoogle Scholar
  27. 27.
    Kennedy J, Turner G (1996) delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253:189–197CrossRefPubMedGoogle Scholar
  28. 28.
    Kleinkauf H, Vondohren H (1983) Nonribosomal peptide formation on multifunctional proteins. Trends Biochem Sci 8:281–283CrossRefGoogle Scholar
  29. 29.
    Kohsaka M, Demain AL (1976) Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem Biophys Res Commun 70:465–473CrossRefPubMedGoogle Scholar
  30. 30.
    Konomi T, Herchen S, Baldwin JE, Yoshida M, Hunt NA, Demain AL (1979) Cell-free conversion of δ-(l-α-aminoadiphyl)-l-cysteinyl-d-valine into an antibiotic with the properties of isopenicillin N in Cephalosporium acremonium. Biochm J 184:427–430CrossRefGoogle Scholar
  31. 31.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  32. 32.
    Liras P, Martin JF (2006) Gene clusters for β-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate? Int Microbiol 9:9–19PubMedGoogle Scholar
  33. 33.
    Liras P, Rodriguez-Garcia A, Martin JF (1998) Evolution of the clusters of genes for β-lactam antibiotics: a model for evolutive combinatorial assembly of new β-lactams. Int Microbiol 1:271–278PubMedGoogle Scholar
  34. 34.
    Loder PB, Abraham EP (1971) Isolation and nature of intracellular peptides from a cephalosporin C-producing Cephalosporium sp. Biochem J 123:471–476CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Marahiel MA (2009) Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 15:799–807CrossRefPubMedGoogle Scholar
  36. 36.
    Marahiel MA (2016) A structural model for multimodular NRPS assembly lines. Nat Prod Rep 33:136–140CrossRefPubMedGoogle Scholar
  37. 37.
    Martin JF, Ullan RV, Garcia-Estrada C (2010) Regulation and compartmentalization of β-lactam biosynthesis. Microb Biotechnol 3:285–299CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760CrossRefPubMedGoogle Scholar
  39. 39.
    Mitchell CA, Shi C, Aldrich CC, Gulick AM (2012) Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Biochemistry 51:3252–3263CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Moore MA (2015) Manipulation of Streptomyces clavuligerus for the purification of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase and the mobilization of plasmid DNA. Memorial University of Newfoundland, St. John’sGoogle Scholar
  41. 41.
    Muller WH, van der Krift TP, Krouwer AJ, Wosten HA, van der Voort LH, Smaal EB, Verkleij AJ (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10:489–495PubMedPubMedCentralGoogle Scholar
  42. 42.
    O’Sullivan J, Bleaney RC, Huddleston JA, Abraham EP (1979) Incorporation of 3H from delta-[l-alpha-amino (4,5-3H)adipyl]-l-cysteinyl-d-(4,4-3H)valine into isopenicillin N. Biochem J 184:421–426CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Roach PL, Clifton IJ, Fulop V, Harlos K, Barton GJ, Hajdu J, Andersson I, Schofield CJ, Baldwin JE (1995) Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375:700–704CrossRefPubMedGoogle Scholar
  44. 44.
    Samel SA, Schoenafinger G, Knappe TA, Marahiel MA, Essen LO (2007) Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 15:781–792CrossRefPubMedGoogle Scholar
  45. 45.
    Schwecke T, Aharonowitz Y, Palissa H, von Dohren H, Kleinkauf H, van Liempt H (1992) Enzymatic characterisation of the multifunctional enzyme delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase from Streptomyces clavuligerus. Eur J Biochem 205:687–694CrossRefPubMedGoogle Scholar
  46. 46.
    Shiau CY, Baldwin JE, Byford MF, Sobey WJ, Schofield CJ (1995) delta-l-(alpha-aminoadipoyl)-l-cysteinyl-d-valine synthetase: the order of peptide bond formation and timing of the epimerisation reaction. FEBS Lett 358:97–100CrossRefPubMedGoogle Scholar
  47. 47.
    Shiau CY, Byford MF, Aplin RT, Baldwin JE, Schofield CJ (1997) l-delta-(alpha-aminoadipoyl)-l-cysteinyl-d-valine synthetase: thioesterification of valine is not obligatory for peptide bond formation. Biochemistry 36:8798–8806CrossRefPubMedGoogle Scholar
  48. 48.
    Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505CrossRefPubMedGoogle Scholar
  49. 49.
    Strieker M, Tanovic A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20:234–240CrossRefPubMedGoogle Scholar
  50. 50.
    Sun J, Kelemen GH, Fernandez-Abalos JM, Bibb MJ (1999) Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145(Pt 9):2221–2227CrossRefPubMedGoogle Scholar
  51. 51.
    Tanovic A, Samel SA, Essen LO, Marahiel MA (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321:659–663CrossRefPubMedGoogle Scholar
  52. 52.
    Tarry MJ, Schmeing TM (2015) Specific disulfide cross-linking to constrict the mobile carrier domain of nonribosomal peptide synthetases. Protein Eng Des Sel 28:163–170CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Theilgaard HB, Kristiansen KN, Henriksen CM, Nielsen J (1997) Purification and characterization of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase from Penicillium chrysogenum. Biochemical J 327(Pt 1):185–191CrossRefGoogle Scholar
  54. 54.
    van der Lende TR, van de Kamp M, Berg M, Sjollema K, Bovenberg RA, Veenhuis M, Konings WN, Driessen AJ (2002) delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. Fungal Genet Biol 37:49–55CrossRefPubMedGoogle Scholar
  55. 55.
    van Liempt H, von Dohren H, Kleinkauf H (1989) delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase from Aspergillus nidulans. The first enzyme in penicillin biosynthesis is a multifunctional peptide synthetase. J Biol Chem 264:3680–3684PubMedGoogle Scholar
  56. 56.
    Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303:1805–1810CrossRefPubMedGoogle Scholar
  57. 57.
    Weissman KJ (2015) The structural biology of biosynthetic megaenzymes. Nat Chem Biol 11:660–670CrossRefPubMedGoogle Scholar
  58. 58.
    Wolfe S, Jokinen MG (1979) Total synthesis of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine (ACV), a biosynthetic precursor of penicillins and cephalosporins. Can J Chem 57:1388–1396CrossRefGoogle Scholar
  59. 59.
    Wu X, Garcia-Estrada C, Vaca I, Martin JF (2012) Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation. Biochimie 94:354–364CrossRefPubMedGoogle Scholar
  60. 60.
    Yoshida M, Konomi T, Kohsaka M, Baldwin JE, Herchen S, Singh P, Hunt NA, Demain AL (1978) Cell-free ring expansion of penicillin N to deacetoxycephalosporin C by Cephalosporium acremonium CW-19 and its mutants. Proc Natl Acad Sci USA 75:6253–6257CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhang J, Demain AL (1992) ACV synthetase. Crit Rev Biotechnol 12:245–260CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang JY, Demain AL (1990) Purification from Cephalosporium acremonium of the initial enzyme unique to the biosynthesis of penicillins and cephalosporins. Biochem Biophys Res Commun 169:1145–1152CrossRefPubMedGoogle Scholar
  63. 63.
    Zhang JY, Demain AL (1990) Purification of ACV synthetase from Streptomyces clavuligerus. Biotechnol Lett 12:649–654CrossRefGoogle Scholar
  64. 64.
    Zhang JY, Demain AL (1992) Invitro stabilization of ACV synthetase-activity from Streptomyces clavuligerus. Appl Biochem Biotech 37:97–110CrossRefGoogle Scholar
  65. 65.
    Zhang JY, Wolfe S, Demain AL (1992) Biochemical studies on the activity of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase from Streptomyces clavuligerus. Biochem J 283:691–698CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • Kapil Tahlan
    • 1
  • Marcus A. Moore
    • 1
  • Susan E. Jensen
    • 2
  1. 1.Department of BiologyMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations