Advertisement

Functional genomics analysis of free fatty acid production under continuous phosphate limiting conditions

  • J. Tyler Youngquist
  • Travis C. Korosh
  • Brian F. Pfleger
Applied Genomics & Systems Biotechnology - Review

Abstract

Free fatty acids (FFA) are an attractive platform chemical that serves as a functional intermediate in metabolic pathways for producing oleochemicals. Many groups have established strains of Escherichia coli capable of producing various chain-length mixtures of FFA by heterologous expression of acyl-ACP thioesterases. For example, high levels of dodecanoic acid are produced by an E. coli strain expressing the Umbellularia californica FatB2 thioesterase, BTE. Prior studies achieved high dodecanoic acid yields and productivities under phosphate-limiting media conditions. In an effort to understand the metabolic and physiological changes that led to increased FFA production, the transcriptome of this strain was assessed as a function of nutrient limitation and growth rate. FFA generation under phosphate limitation led to consistent changes in transporter expression, osmoregulation, and central metabolism. Guided by these results, targeted knockouts led to a further ~11 % in yield in FFA.

Keywords

Free fatty acid Microarray Escherichiacoli Phosphate limitation Functional genomics Thioesterase 

Notes

Acknowledgements

This work was funded by the DOE Great Lakes Bioenergy Research Center (GLBRC DOE Office of Science BER DE-FC02-07ER64494) and the National Science Foundation (CBET-1149678). TCK is the recipient of a Biotechnology Training Fellowship through the National Institutes of Health (NIGMS-5 T32 GM08349).

Supplementary material

10295_2016_1846_MOESM1_ESM.xlsx (2.3 mb)
Supplementary material 1 (XLSX 2397 kb)

References

  1. 1.
    Pfleger BF, Gossing M, Nielsen J (2015) Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 29:1–11. doi: 10.1016/j.ymben.2015.01.009 CrossRefPubMedGoogle Scholar
  2. 2.
    Lennen RM, Pfleger BF (2013) Microbial production of fatty acid-derived fuels and chemicals. Curr Opin Biotechnol 24:1044–1053. doi: 10.1016/j.copbio.2013.02.028 CrossRefPubMedGoogle Scholar
  3. 3.
    Lennen RM, Pfleger BF (2012) Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30:659–667. doi: 10.1016/j.tibtech.2012.09.006 CrossRefPubMedGoogle Scholar
  4. 4.
    Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol 176(23):7320–7327CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lennen RM, Braden DJ, West RA, Dumesic JAPB (2010) A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 106:193–202CrossRefPubMedGoogle Scholar
  6. 6.
    Youngquist JT, Lennen RM, Ranatunga DR et al (2012) Kinetic modeling of free fatty acid production in Escherichia coli based on continuous cultivation of a plasmid free strain. Biotechnol Bioeng 109:1518–1527. doi: 10.1002/bit.24420 CrossRefPubMedGoogle Scholar
  7. 7.
    Youngquist JT, Rose JP, Pfleger BF (2013) Free fatty acid production in Escherichia coli under phosphate-limited conditions. Appl Microbiol Biotechnol 97:5149–5159. doi: 10.1007/s00253-013-4911-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Heath RJ, Rock CO (1996) Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. Ann Rev Microbiol 271:1833–1836. doi: 10.1074/jbc.271.4.1833 Google Scholar
  9. 9.
    Cronan JE (2003) Bacterial membrane lipids: where do we stand? Ann Rev Microbiol 57:203–224. doi: 10.1146/annurev.micro.57.030502.090851 CrossRefGoogle Scholar
  10. 10.
    Hoover SW, Youngquist JT, Angart PA et al (2012) Isolation of improved free fatty acid overproducing strains of Escherichia coli via nile red based high-throughput screening. Environ Prog Sustain Energy 31:17–23. doi: 10.1002/ep.10599 CrossRefGoogle Scholar
  11. 11.
    Ranganathan S, Tee TW, Chowdhury A et al (2012) An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metab Eng 14:687–704. doi: 10.1016/j.ymben.2012.08.008 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang F, Ouellet M, Batth TS et al (2012) Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 14:653–660. doi: 10.1016/j.ymben.2012.08.009 CrossRefPubMedGoogle Scholar
  13. 13.
    Haushalter RW, Groff D, Deutsch S et al (2015) Development of an orthogonal fatty acid biosynthesis system in E. coli for oleochemical production. Metab Eng 30:1–6. doi: 10.1016/j.ymben.2015.04.003 CrossRefPubMedGoogle Scholar
  14. 14.
    Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD, Pfleger BF (2011) Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77(22):8114–8128. doi: 10.1128/AEM.05421-11 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rock CO, Jackowski S (2002) Forty years of bacterial fatty acid synthesis. Biochem Biophys Res Commun 292:1155–1166. doi: 10.1006/bbrc.2001.2022 CrossRefPubMedGoogle Scholar
  16. 16.
    Valgepea K, Adamberg K, Nahku R et al (2010) Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 4:166. doi: 10.1186/1752-0509-4-166 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Basan M, Hui S, Okano H et al (2015) Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528:99–104. doi: 10.1038/nature15765 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Majewski RA, Domach MM (1990) Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol Bioeng 35:732–738. doi: 10.1002/bit.260350711 CrossRefPubMedGoogle Scholar
  19. 19.
    Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151:693–706. doi: 10.1099/mic.0.27481-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Weber J, Kayser A, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. Microbiology 151:707–716. doi: 10.1099/mic.0.27482-0 CrossRefPubMedGoogle Scholar
  21. 21.
    Marzan LW, Shimizu K (2011) Metabolic regulation of Escherichia coli and its phoB and phoR genes knockout mutants under phosphate and nitrogen limitations as well as at acidic condition. Microb Cell Fact 10:39. doi: 10.1186/1475-2859-10-39 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhu K, Zhang Y-M, Rock CO (2009) Transcriptional regulation of membrane lipid homeostasis in Escherichia coli. J Biol Chem 284:34880–34888. doi: 10.1074/jbc.M109.068239 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lennen RM, Pfleger BF (2013) Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One 8:e54031. doi: 10.1371/journal.pone.0054031 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203PubMedPubMedCentralGoogle Scholar
  25. 25.
    Laimins LA, Rhoads DB, Epstein W (1981) Osmotic control of kdp operon expression in Escherichia coli. Proc Natl Acad Sci USA 78:464–468CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mao Y, Doyle MP, Chen J (2006) Role of colanic acid exopolysaccharide in the survival of enterohaemorrhagic Escherichia coli O157:H7 in simulated gastrointestinal fluids. Lett Appl Microbiol 42:642–647. doi: 10.1111/j.1472-765X.2006.01875.x CrossRefGoogle Scholar
  27. 27.
    Ghrist AC, Stauffer GV (1995) Characterization of the Escherichia coli gcvR gene encoding a negative regulator of gcv expression. J Bacteriol 177:4980–4984CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ikuchi BGK, Otokawa YM, Ãtyo A, KHI Ã (2008) Review glycine cleavage system : reaction mechanism, physiological significance, and hyperglycinemia. 84:246–263. doi: 10.2183/pjab/84.246
  29. 29.
    Han L, Doverskog M, Enfors S-O, Häggström L (2002) Effect of glycine on the cell yield and growth rate of Escherichia coli: evidence for cell-density-dependent glycine degradation as determined by (13)C NMR spectroscopy. J Biotechnol 92:237–249CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao B, Houry WA (2010) Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem cell Biol Biochim Biol Cell 88:301–314. doi: 10.1139/O09-182 CrossRefGoogle Scholar
  31. 31.
    Kobayashi A, Hirakawa H, Hirata T et al (2006) Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J Bacteriol 188:5693–5703. doi: 10.1128/JB.00217-06 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Castanié-Cornet M-P, Treffandier H, Francez-Charlot A et al (2007) The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His-Asp phosphorelay RcsCDB/AF. Microbiology 153:238–246. doi: 10.1099/mic.0.29278-0 CrossRefPubMedGoogle Scholar
  33. 33.
    Chattopadhyay MK, Tabor CW, Tabor H (2009) Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J Bacteriol 191:5549–5552. doi: 10.1128/JB.00381-09 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hommais F, Krin E, Coppee J-Y et al (2004) GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150:61–72. doi: 10.1099/mic.0.26659-0 CrossRefPubMedGoogle Scholar
  35. 35.
    Lennen RM, Politz MG, Kruziki MA, Pfleger BF (2013) Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 195:135–144. doi: 10.1128/JB.01477-12 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fischer E, Sauer U (2003) A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 278:46446–46451. doi: 10.1074/jbc.M307968200 CrossRefPubMedGoogle Scholar
  37. 37.
    Haverkorn van Rijsewijk BRB, Nanchen A, Nallet S et al (2011) Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol Syst Biol 7:477. doi: 10.1038/msb.2011.9 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694–708CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shin S, Park C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fitzgerald DM, Bonocora RP, Wade JT et al (2014) Comprehensive mapping of the Escherichia coli flagellar regulatory network. PLoS Genet 10:e1004649. doi: 10.1371/journal.pgen.1004649 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Eichhorn E (1999) Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J Biol Chem 274:26639–26646. doi: 10.1074/jbc.274.38.26639 CrossRefPubMedGoogle Scholar
  42. 42.
    Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119:736–747PubMedPubMedCentralGoogle Scholar
  43. 43.
    van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, Leisinger T (1996) Identification of sulfate starvation-regulated genes in Escherichia coli : a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 178:5438–5446CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wada A, Igarashi K, Yoshimura S et al (1995) Ribosome modulation factor: stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli. Biochem Biophys Res Commun 214:410–417CrossRefPubMedGoogle Scholar
  45. 45.
    Ma Z, Gong S, Richard H et al (2003) GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49:1309–1320. doi: 10.1046/j.1365-2958.2003.03633.x CrossRefPubMedGoogle Scholar
  46. 46.
    Moen B, Janbu AO, Langsrud S et al (2009) Global responses of Escherichia coli to adverse conditions determined by microarrays and FT-IR spectroscopy. Can J Microbiol 728:714–728. doi: 10.1139/W09-016 CrossRefGoogle Scholar
  47. 47.
    Moreau PL (2007) The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J Bacteriol 189:2249–2261. doi: 10.1128/JB.01306-06 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sayed AK, Odom C, Foster JW (2007) The Escherichia coli AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. Microbiology 153:2584–2592. doi: 10.1099/mic.0.2007/007005-0 CrossRefPubMedGoogle Scholar
  49. 49.
    Zhao K, Liu M, Burgess RR (2007) Adaptation in bacterial flagellar and motility systems: from regulon members to “foraging”-like behavior in E. coli. Nucl Acids Res 35:4441–4452. doi: 10.1093/nar/gkm456 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Liu M, Durfee T, Cabrera JE et al (2005) Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280:15921–15927. doi: 10.1074/jbc.M414050200 CrossRefPubMedGoogle Scholar
  51. 51.
    Berg HC (2003) The rotary motor of bacterial flagella. Ann Rev Biochem 72:19–54. doi: 10.1146/annurev.biochem.72.121801.161737 CrossRefPubMedGoogle Scholar
  52. 52.
    Wood TK, González Barrios AF, Herzberg M, Lee J (2006) Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72:361–367. doi: 10.1007/s00253-005-0263-8 CrossRefPubMedGoogle Scholar
  53. 53.
    Copeland MF, Flickinger ST, Tuson HH, Weibel DB (2010) Studying the dynamics of flagella in multicellular communities of Escherichia coli by using biarsenical dyes. Appl Environ Microbiol 76:1241–1250. doi: 10.1128/AEM.02153-09 CrossRefPubMedGoogle Scholar
  54. 54.
    Li M, Zhang X, Agrawal A, San K-Y (2012) Effect of acetate formation pathway and long chain fatty acid CoA-ligase on the free fatty acid production in E. coli expressing acy-ACP thioesterase from Ricinus communis. Metab Eng 14:380–387. doi: 10.1016/j.ymben.2012.03.007 CrossRefPubMedGoogle Scholar
  55. 55.
    Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:1–11. doi: 10.1038/msb4100050 CrossRefGoogle Scholar
  56. 56.
    Nishino K, Senda Y, Yamaguchi A (2008) The AraC-family regulator GadX enhances multidrug resistance in Escherichia coli by activating expression of mdtEF multidrug efflux genes. J Infect Chemother 14:23–29CrossRefPubMedGoogle Scholar
  57. 57.
    De Biase D, Tramonti A, Bossa F, Visca P (1999) The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32:1198–1211CrossRefPubMedGoogle Scholar
  58. 58.
    Tramonti A, Visca P, De Canio M et al (2002) Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-Like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system functional characterization and regulation of gadX, a gene encoding an AraC/Xy. J Bacteriol 184:2603–2613. doi: 10.1128/JB.184.10.2603 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Capitani G, De Biase D, Aurizi C et al (2003) Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J 22:4027–4037. doi: 10.1093/emboj/cdg403 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gauger EJ, Leatham MP, Mercado-Lubo R et al (2007) Role of motility and the flhDC operon in Escherichia coli MG1655 colonization of the mouse intestine. Infect Immun 75:3315–3324. doi: 10.1128/IAI.00052-07 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gosink KK, Häse CC (2000) Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli. J Bacteriol 182:4234–4240CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431PubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Microbiology Doctoral Training Program, University of Wisconsin-MadisonMadisonUSA
  3. 3.Graduate Program in Environmental Chemistry and TechnologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations