Skip to main content
Log in

Efficient bioconversion of l-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells

  • Biocatalysis - Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This work investigated the efficient bioconversion process of l-glutamate to GABA by Lactobacillus brevis TCCC 13007 resting cells. The optimal bioconversion system was composed of 50 g/L 48 h cultivated wet resting cells, 0.1 mM pyridoxal phosphate in glutamate-containing 0.6 M citrate buffer (pH 4.5) and performed at 45 °C and 180 rpm. By 10 h bioconversion at the ratio of 80 g/L l-glutamic acid to 240 g/L monosodium glutamate, the final titer of GABA reached 201.18 g/L at the molar bioconversion ratio of 99.4 %. This process presents a potential for industrial and commercial applications and also offers a promising feasibility of continuous GABA production coupled with fermentation. Besides, the built kinetics model revealed that the optimum operating conditions were 45 °C and pH 4.5, and the bioconversion kinetics at low ranges of substrate concentration (0 < S < 80 g/L) was assumed to follow the classical Michaelis–Menten equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cho YR, Chang JY, Chang HC (2007) Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 17(1):104–109

    CAS  PubMed  Google Scholar 

  2. Choi J, Yim S, Lee S, Kang T, Park S, Jeong K (2015) Enhanced production of γ-aminobutyrate (GABA) in recombinant by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact 1:21

    Article  Google Scholar 

  3. Choi SI, Lee JW, Park SM, Lee MY, Ji GE, Park MS, Heo TR (2006) Improvement of gamma-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. J Microbiol Biotechnol 16:562–568

    CAS  Google Scholar 

  4. Dhakal R, Bajpai VK, Baek KH (2012) Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Braz J Microbiol 43:1230–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gangaraju DS, Murty VR, Prapulla SG (2014) Probiotic-mediated biotransformation of monosodium glutamate to γ-aminobutyric acid: differential production in complex and minimal media and kinetic modelling. Ann Microbiol 64:229–237

    Article  CAS  Google Scholar 

  6. Gao Q, Duan Q, Wang D, Zhang Y, Zheng C (2013) Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies. J Agr Food Chem 618:1914–1919

    Article  Google Scholar 

  7. He Y, Gong J, Yu HY, Tao Y, Zhang S, Dong ZY (2015) High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli. Microb Cell Fact 14:55

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huang J, Mei LH, Wu H, Lin DQ (2007) Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J Microbiol Biotechnol 23:865–871

    Article  CAS  Google Scholar 

  9. Jones EA (2002) Ammonia, the GABA neurotransmitter system, and hepatic encephalopathy. Metab Brain Dis 17:275–281

    Article  CAS  PubMed  Google Scholar 

  10. Kang TJ, Ho NAT, Pack SP (2013) Buffer-free production of gamma-aminobutyric acid using an engineered glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol 53:200–205

    Article  CAS  PubMed  Google Scholar 

  11. Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  12. Komatsuzaki N, Nakamura T, Kimura T, Shima J (2008) Characterization of glutamate decarboxylase from a high γ-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Biosci Biotechnol Biochem 72:278–285

    Article  CAS  PubMed  Google Scholar 

  13. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504

    Article  CAS  Google Scholar 

  14. Kumar S, Punekar NS, SatyaNarayan V, Venkatesh KV (2000) Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate (GABA) shunt in Aspergillus niger. Biotechnol Bioeng 67:575–584

    Article  CAS  PubMed  Google Scholar 

  15. Lei Z, Tian J, Qiu P, Wang L, Long X, Zhang S, Zeng Z, Tian Y (2014) Biosynthesis of gama-aminobutyric acid by induced resting cells of Lactobacillus brevis SIIA11021. J Chem Pharma Res 6(12):342–348

    Google Scholar 

  16. Li J, Yang J, Men Y, Zeng Y, Zhu Y, Dong C, Sun Y, Ma Y (2015) Biosynthesis of 2-deoxysugars using whole-cell catalyst expressing 2-deoxy-d-ribose 5-phosphate aldolase. Appl Microbiol Biotechnol 99(19):7963–7972

    Article  CAS  PubMed  Google Scholar 

  17. Márquez FJ, Quesada AR, Sánchez-Jiménez F, Núñez De Castro I (1986) Determination of 27 dansyl amino acid derivatives in biological fluids by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 380:275–283

    Article  Google Scholar 

  18. Park KB, Oh SH (2007) Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresour Technol 98:312–319

    Article  CAS  PubMed  Google Scholar 

  19. Perkins C, Siddiqui S, Puri M, Demain AL (2015) Biotechnological applications of microbial bioconversions. Crit Rev Biotechnol. doi:10.3109/07388551.2015.1083943

    PubMed  Google Scholar 

  20. Pham VD, Somasundaram S, Lee SH, Park SJ, Hong SH (2016) Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. J Ind Microbiol Biotechnol 43(1):79–86

    Article  Google Scholar 

  21. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310

    Article  CAS  PubMed  Google Scholar 

  22. Shi F, Jiang J, Li Y, Li Y, Xie Y (2013) Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biotechnol 40(11):1285–1296

    Article  CAS  PubMed  Google Scholar 

  23. Shi XF, Zheng B, Chang CY, Cao P, Yang HJ, Gao Q (2015) Enzymatic bioconversion for γ-aminobutyric acid by Lactobacillus brevis CGMCC No. 3414 resting cells. Lect Notes Electr Eng 333:609–617

    Article  Google Scholar 

  24. Yang T, Rao Z, Kimani BG, Xu M, Zhang X, Yang ST (2015) Two-step production of gamma-aminobutyric acid from cassava powder using Corynebacterium glutamicum and Lactobacillus plantarum. J Ind Microbiol Biotechnol 42(8):1157–1165

    Article  CAS  PubMed  Google Scholar 

  25. Toney MD (2005) Reaction specificity in pyridoxal phosphate enzymes. Arch Biochem Biophys 433:279–287

    Article  CAS  PubMed  Google Scholar 

  26. Ueno H (2000) Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B Enzym 10:67–79

    Article  CAS  Google Scholar 

  27. Ueno Y, Hayakawa K, Takahashi S, Oda K (1997) Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem 61:1168–1171

    Article  CAS  PubMed  Google Scholar 

  28. Yokoyama S, Hiramatsu J, Hayakawa K (2002) Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J Biosci Bioeng 93:95–97

    Article  CAS  PubMed  Google Scholar 

  29. Yoshimura M, Toyoshi T, Sano A, Izumi T, Fujii T, Konishi C, Obata A (2010) Antihypertensive effect of a γ-aminobutyric acid rich tomato Cultivar ‘DG03-9’ in spontaneously hypertensive rats. J Agr Food Chem 58:615–619

    Article  CAS  Google Scholar 

  30. Yu X (2009) Handbook of MSG Industry. China Light Industry Press, Beijing, China (in Chinese)

    Google Scholar 

  31. Zhang Y, Gao NF, Feng Y, Song L, Gao Q (2010) Biotransformation of sodium l-glutamate to γ-aminobutyric acid by L. brevis TCCC 13007 with two glutamate decarboxylase genes. In: 2010 4th international conference on bioinformatics and biomedical engineering (iCBBE 2010), vol. 2, p 1–4

  32. Zhang Y, Song L, Gao Q, Yu SM, Li L, Gao NF (2011) The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl Microbiol Biotechnol 94:1619–1627

    Article  Google Scholar 

  33. Zhao A, Hu X, Pan L, Wang X (2015) Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate. Appl Microbiol Biotechnol 99(7):3191–3200

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Qiu T, Huang G, Cao Y (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:85

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim EJ, Lee J-H (2014) Effects and optimization of gamma-amino butyric acid (GABA) production process using glutamate decarboxylase (GAD). Korean Soc Biotechnol Bioeng J. 29(6):426–431. doi:10.7841/ksbbj.2014.29.6.426 (in Korean)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (973 Program) (2013CB734004), the National High-tech R&D Program (863 Program) (2012AA021032), and the National Natural Science Foundation of China (31370075 & 31471725).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Gao.

Additional information

This article is dedicated to Dr. Arnold L. Demain for his 90th birthday, and his lifetime devotion and worldwide impact on industrial microbiology and biotechnology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Chang, C., Ma, S. et al. Efficient bioconversion of l-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells. J Ind Microbiol Biotechnol 44, 697–704 (2017). https://doi.org/10.1007/s10295-016-1777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1777-z

Keywords

Navigation