Efficient bioconversion of l-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells

  • Xiufeng Shi
  • Chuanyou Chang
  • Shenxi Ma
  • Yibing Cheng
  • Jun Zhang
  • Qiang Gao
Biocatalysis - Review

Abstract

This work investigated the efficient bioconversion process of l-glutamate to GABA by Lactobacillus brevis TCCC 13007 resting cells. The optimal bioconversion system was composed of 50 g/L 48 h cultivated wet resting cells, 0.1 mM pyridoxal phosphate in glutamate-containing 0.6 M citrate buffer (pH 4.5) and performed at 45 °C and 180 rpm. By 10 h bioconversion at the ratio of 80 g/L l-glutamic acid to 240 g/L monosodium glutamate, the final titer of GABA reached 201.18 g/L at the molar bioconversion ratio of 99.4 %. This process presents a potential for industrial and commercial applications and also offers a promising feasibility of continuous GABA production coupled with fermentation. Besides, the built kinetics model revealed that the optimum operating conditions were 45 °C and pH 4.5, and the bioconversion kinetics at low ranges of substrate concentration (0 < S < 80 g/L) was assumed to follow the classical Michaelis–Menten equation.

Keywords

Lactobacillus brevis Glutamate γ-Aminobutyric acid Bioconversion Kinetics model 

Notes

Acknowledgments

This study was supported by the National Basic Research Program of China (973 Program) (2013CB734004), the National High-tech R&D Program (863 Program) (2012AA021032), and the National Natural Science Foundation of China (31370075 & 31471725).

References

  1. 1.
    Cho YR, Chang JY, Chang HC (2007) Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 17(1):104–109PubMedGoogle Scholar
  2. 2.
    Choi J, Yim S, Lee S, Kang T, Park S, Jeong K (2015) Enhanced production of γ-aminobutyrate (GABA) in recombinant by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact 1:21CrossRefGoogle Scholar
  3. 3.
    Choi SI, Lee JW, Park SM, Lee MY, Ji GE, Park MS, Heo TR (2006) Improvement of gamma-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. J Microbiol Biotechnol 16:562–568Google Scholar
  4. 4.
    Dhakal R, Bajpai VK, Baek KH (2012) Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Braz J Microbiol 43:1230–1241CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gangaraju DS, Murty VR, Prapulla SG (2014) Probiotic-mediated biotransformation of monosodium glutamate to γ-aminobutyric acid: differential production in complex and minimal media and kinetic modelling. Ann Microbiol 64:229–237CrossRefGoogle Scholar
  6. 6.
    Gao Q, Duan Q, Wang D, Zhang Y, Zheng C (2013) Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies. J Agr Food Chem 618:1914–1919CrossRefGoogle Scholar
  7. 7.
    He Y, Gong J, Yu HY, Tao Y, Zhang S, Dong ZY (2015) High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli. Microb Cell Fact 14:55CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Huang J, Mei LH, Wu H, Lin DQ (2007) Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J Microbiol Biotechnol 23:865–871CrossRefGoogle Scholar
  9. 9.
    Jones EA (2002) Ammonia, the GABA neurotransmitter system, and hepatic encephalopathy. Metab Brain Dis 17:275–281CrossRefPubMedGoogle Scholar
  10. 10.
    Kang TJ, Ho NAT, Pack SP (2013) Buffer-free production of gamma-aminobutyric acid using an engineered glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol 53:200–205CrossRefPubMedGoogle Scholar
  11. 11.
    Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509CrossRefGoogle Scholar
  12. 12.
    Komatsuzaki N, Nakamura T, Kimura T, Shima J (2008) Characterization of glutamate decarboxylase from a high γ-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Biosci Biotechnol Biochem 72:278–285CrossRefPubMedGoogle Scholar
  13. 13.
    Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504CrossRefGoogle Scholar
  14. 14.
    Kumar S, Punekar NS, SatyaNarayan V, Venkatesh KV (2000) Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate (GABA) shunt in Aspergillus niger. Biotechnol Bioeng 67:575–584CrossRefPubMedGoogle Scholar
  15. 15.
    Lei Z, Tian J, Qiu P, Wang L, Long X, Zhang S, Zeng Z, Tian Y (2014) Biosynthesis of gama-aminobutyric acid by induced resting cells of Lactobacillus brevis SIIA11021. J Chem Pharma Res 6(12):342–348Google Scholar
  16. 16.
    Li J, Yang J, Men Y, Zeng Y, Zhu Y, Dong C, Sun Y, Ma Y (2015) Biosynthesis of 2-deoxysugars using whole-cell catalyst expressing 2-deoxy-d-ribose 5-phosphate aldolase. Appl Microbiol Biotechnol 99(19):7963–7972CrossRefPubMedGoogle Scholar
  17. 17.
    Márquez FJ, Quesada AR, Sánchez-Jiménez F, Núñez De Castro I (1986) Determination of 27 dansyl amino acid derivatives in biological fluids by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 380:275–283CrossRefGoogle Scholar
  18. 18.
    Park KB, Oh SH (2007) Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresour Technol 98:312–319CrossRefPubMedGoogle Scholar
  19. 19.
    Perkins C, Siddiqui S, Puri M, Demain AL (2015) Biotechnological applications of microbial bioconversions. Crit Rev Biotechnol. doi: 10.3109/07388551.2015.1083943 PubMedGoogle Scholar
  20. 20.
    Pham VD, Somasundaram S, Lee SH, Park SJ, Hong SH (2016) Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. J Ind Microbiol Biotechnol 43(1):79–86CrossRefGoogle Scholar
  21. 21.
    Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310CrossRefPubMedGoogle Scholar
  22. 22.
    Shi F, Jiang J, Li Y, Li Y, Xie Y (2013) Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biotechnol 40(11):1285–1296CrossRefPubMedGoogle Scholar
  23. 23.
    Shi XF, Zheng B, Chang CY, Cao P, Yang HJ, Gao Q (2015) Enzymatic bioconversion for γ-aminobutyric acid by Lactobacillus brevis CGMCC No. 3414 resting cells. Lect Notes Electr Eng 333:609–617CrossRefGoogle Scholar
  24. 24.
    Yang T, Rao Z, Kimani BG, Xu M, Zhang X, Yang ST (2015) Two-step production of gamma-aminobutyric acid from cassava powder using Corynebacterium glutamicum and Lactobacillus plantarum. J Ind Microbiol Biotechnol 42(8):1157–1165CrossRefPubMedGoogle Scholar
  25. 25.
    Toney MD (2005) Reaction specificity in pyridoxal phosphate enzymes. Arch Biochem Biophys 433:279–287CrossRefPubMedGoogle Scholar
  26. 26.
    Ueno H (2000) Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B Enzym 10:67–79CrossRefGoogle Scholar
  27. 27.
    Ueno Y, Hayakawa K, Takahashi S, Oda K (1997) Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem 61:1168–1171CrossRefPubMedGoogle Scholar
  28. 28.
    Yokoyama S, Hiramatsu J, Hayakawa K (2002) Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J Biosci Bioeng 93:95–97CrossRefPubMedGoogle Scholar
  29. 29.
    Yoshimura M, Toyoshi T, Sano A, Izumi T, Fujii T, Konishi C, Obata A (2010) Antihypertensive effect of a γ-aminobutyric acid rich tomato Cultivar ‘DG03-9’ in spontaneously hypertensive rats. J Agr Food Chem 58:615–619CrossRefGoogle Scholar
  30. 30.
    Yu X (2009) Handbook of MSG Industry. China Light Industry Press, Beijing, China (in Chinese) Google Scholar
  31. 31.
    Zhang Y, Gao NF, Feng Y, Song L, Gao Q (2010) Biotransformation of sodium l-glutamate to γ-aminobutyric acid by L. brevis TCCC 13007 with two glutamate decarboxylase genes. In: 2010 4th international conference on bioinformatics and biomedical engineering (iCBBE 2010), vol. 2, p 1–4Google Scholar
  32. 32.
    Zhang Y, Song L, Gao Q, Yu SM, Li L, Gao NF (2011) The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl Microbiol Biotechnol 94:1619–1627CrossRefGoogle Scholar
  33. 33.
    Zhao A, Hu X, Pan L, Wang X (2015) Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate. Appl Microbiol Biotechnol 99(7):3191–3200CrossRefPubMedGoogle Scholar
  34. 34.
    Li H, Qiu T, Huang G, Cao Y (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:85CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim EJ, Lee J-H (2014) Effects and optimization of gamma-amino butyric acid (GABA) production process using glutamate decarboxylase (GAD). Korean Soc Biotechnol Bioeng J. 29(6):426–431. doi: 10.7841/ksbbj.2014.29.6.426 (in Korean) Google Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • Xiufeng Shi
    • 1
  • Chuanyou Chang
    • 1
  • Shenxi Ma
    • 1
  • Yibing Cheng
    • 1
  • Jun Zhang
    • 1
  • Qiang Gao
    • 1
  1. 1.Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of BiotechnologyTianjin University of Science and TechnologyTianjinPeople’s Republic of China

Personalised recommendations