Skip to main content

Morphological quantification of filamentous fungal development using membrane immobilization and automatic image analysis

Abstract

Mycelial morphology is a critically important process property in industrial fermentations of filamentous micro-organisms, as particular phenotypes are associated with maximum productivity. However, the accurate quantification of complex morphologies still represents a significant challenge in elucidating this relationship. A system has been developed for high-resolution characterisation of filamentous fungal growth on a solid substrate, using membrane immobilization and fully-automatic plug-ins developed for the public domain, Java-based, image-processing software, ImageJ. The system has been used to quantify the microscopic development of Aspergillus oryzae on malt agar, by measuring spore projected area and circularity, the total length of a hyphal element, the number of tips per element, and the hyphal growth unit. Two different stages of growth are described, from the swelling of a population of conidiospores up to fully developed, branched hyphae 24 h after inoculation. Spore swelling expressed as an increase in mean equivalent spore diameter was found to be approximately linear with time. Widespread germination of spores was observed by 8 h after inoculation. From approximately 12 h, the number of tips was found to increase exponentially. The specific growth rate of a population of hyphae was calculated as approximately 0.24–0.27 h−1. A wide variation in growth kinetics was found within the population. The robustness of the image-analysis system was verified by testing the effect of small variations in the input data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Rodriguez-Tudela JL, Aviles P (1991) Improved adhesive method for microscopic examination of fungi in culture. J Clin Microbiol 29:2604–2605

    PubMed  CAS  Google Scholar 

  2. Harris JL (2000) Safe, low-distortion tape touch method for fungal slide mounts. J Clin Microbiol 38:4683–4684

    PubMed  CAS  Google Scholar 

  3. Wang L, Ridgway D, Gu T, Moo-Young M (2005) Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv 23:115–129. doi:10.1016/j.biotechadv.2004.11.001

    PubMed  Article  CAS  Google Scholar 

  4. Kim Y, Nandakumar MP, Marten MR (2007) Proteomics of filamentous fungi. Trends Biotechnol 25:395–400. doi:10.1016/j.tibtech.2007.07.008

    PubMed  Article  CAS  Google Scholar 

  5. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414. doi:10.1038/nbt1028

    PubMed  Article  CAS  Google Scholar 

  6. Mitchell DA (1992) Growth patterns, growth kinetics and the modelling of growth in solid-state cultivation. In: Doelle HW, Mitchell DA, Rolz C (eds) Solid substrate cultivation. Elsevier Applied Science, New York, pp 87–114

    Google Scholar 

  7. Ishida H, Hata Y, Kawato A, Abe Y, Suginami K, Imayasu S (2000) Identification of functional elements that regulate the glucoamylase-encoding gene (glaB) expressed in solid-state culture of Aspergillus oryzae. Curr Genet 37:373–379. doi:10.1007/s002940000118

    PubMed  Article  CAS  Google Scholar 

  8. Iwashita K (2002) Recent studies of protein secretion by filamentous fungi. J Biosci Bioeng 94:530–535

    PubMed  CAS  Google Scholar 

  9. te Biesebeke R, Ruijter G, Rahardjo YSP, Hoogschagen MJ, Heerikhuisen M, Levin A, van Driel KGA, Schutyser MAI, Dijksterhuis J, Zhu Y, Weber FJ, de Vos WM, van den Hondel KAMJJ, Rinzema A, Punt PJ (2002) Aspergillus oryzae in solid-state and submerged fermentations. FEM Yeast Res 2:245–248

    CAS  Google Scholar 

  10. Bigelis R, He H, Yang HY, Chang LP, Greenstein M (2006) Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J Ind Microbiol Biotechnol 33:815–826. doi:10.1007/s10295-006-0126-z

    PubMed  Article  CAS  Google Scholar 

  11. Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–3457. doi:10.1128/AEM.72.5.3448-3457.2006

    PubMed  Article  CAS  Google Scholar 

  12. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259. doi:10.1016/j.biotechadv.2003.09.005

    PubMed  Article  CAS  Google Scholar 

  13. Wessels JGH (1993) Tansley Review No. 45. Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413. doi:10.1111/j.1469-8137.1993.tb03751.x

    Article  CAS  Google Scholar 

  14. Gordon CL, Archer DB, Jeenes DJ, Doonan JH, Wells B, Trinci AP, Robson GD (2000) A glucoamylase:GFP gene fusion to study protein secretion by individual hyphae of Aspergillus niger. J Microbiol Methods 42:39–48. doi:10.1016/S0167-7012(00)00170-6

    PubMed  Article  CAS  Google Scholar 

  15. Muller C, McIntyre M, Hansen K, Nielsen J (2002) Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl Environ Microbiol 68:1827–1836. doi:10.1128/AEM.68.4.1827-1836.2002

    PubMed  Article  CAS  Google Scholar 

  16. Papagianni M, Mattey M, Kristiansen B (1999) Hyphal vacuolation and fragmentation in batch and fed-batch culture of Aspergillus niger and its relation to citric acid production. Process Biochem 35:359–366. doi:10.1016/S0032-9592(99)00079-5

    Article  CAS  Google Scholar 

  17. Muller C, Spohr AB, Nielsen J (2000) Role of substrate concentration in mitosis and hyphal extension of Aspergillus. Biotechnol Bioeng 67:390–397. doi:10.1002/(SICI)1097-0290(20000220)67:4<390::AID-BIT2>3.0.CO;2-O

    PubMed  Article  CAS  Google Scholar 

  18. Cox PW, Paul GC, Thomas CR (1998) Image analysis of the morphology of filamentous micro-organisms. Microbiology 144(Pt 4):817–827

    PubMed  CAS  Article  Google Scholar 

  19. Amanullah A, Blair R, Nienow AW, Thomas CR (1999) Effects of agitation intensity on mycelial morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae. Biotechnol Bioeng 62:434–446. doi:10.1002/(SICI)1097-0290(19990220)62:4<;434::AID-BIT6>;3.0.CO;2-D

    PubMed  Article  CAS  Google Scholar 

  20. Metz B, Kossen NWF (1977) The growth of molds in the form of pellets—a literature review. Biotechnol Bioeng 19:781–799. doi:10.1002/bit.260190602

    Article  CAS  Google Scholar 

  21. Zetelaki K, Vas K (1968) The role of aeration and agitation in the production of glucose oxidase in submerged culture. Biotechnol Bioeng 10:45–59. doi:10.1002/bit.260100104

    Article  CAS  Google Scholar 

  22. Hermersdörfer H, Leuchtenberger A, Wardsack C, Ruttloff H (1987) Influence of culture conditions on mycelial structure and polygalacturonase synthesis of Aspergillus niger. J Basic Microbiol 27:309–315. doi:10.1002/jobm.3620270604

    PubMed  Article  Google Scholar 

  23. Papagianni M, Moo-Young M (2002) Protease secretion in glucoamylase producer Aspergillus niger cultures: fungal morphology and inoculum effects. Process Biochem 37:1271–1278. doi:10.1016/S0032-9592(02)00002-X

    Article  CAS  Google Scholar 

  24. Kisser M, Kubicek CP, Röhr M (1980) Influence of manganese on morphology and cell wall composition of Aspergillus niger during citric acid fermentation. Arch Microbiol 128:26–33. doi:10.1007/BF00422301

    PubMed  Article  CAS  Google Scholar 

  25. Paul GC, Priede MA, Thomas CR (1999) Relationship between morphology and citric acid production in submerged Aspergillus niger fermentations. Biochem Eng J 3:121–129. doi:10.1016/S1369-703X(99)00012-1

    Article  CAS  Google Scholar 

  26. Žnidaršič P, Pavko A (2001) The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technol Biotechnol 39:237–252

    Google Scholar 

  27. Elmayergi H, Scharer JM, Moo-Young M (1973) Effects of polymer additives on fermentation parameters in a culture of A. niger. Biotechnol Bioeng 15:845–859. doi:10.1002/bit.260150503

    Article  CAS  Google Scholar 

  28. Thibault J, Pouliot K, Agosin E, Pérez-Correa R (2000) Reassessment of the estimation of dissolved oxygen concentration profile and KLa in solid-state fermentation. Process Biochem 36:9–18. doi:10.1016/S0032-9592(00)00156-4

    Article  CAS  Google Scholar 

  29. Couri S, Merces EP, Neves BC, Senna LF (2006) Digital image processing as a tool to monitor biomass growth in Aspergillus niger 3T5B8 solid-state fermentation: preliminary results. J Microsc 224:290–297. doi:10.1111/j.1365-2818.2006.01699.x

    PubMed  Article  CAS  Google Scholar 

  30. Caldwell IY, Trinci APJ (1973) The growth unit of the mould Geotrichum candidum. Arch Microbiol 88:1–10. doi:10.1007/BF00408836

    CAS  Google Scholar 

  31. Metz B, de Bruijn EW, van Suijdam JC (1981) Methods for quantitative representation of the morphology of molds. Biotechnol Bioeng 23:149–162. doi:10.1002/bit.260230110

    Article  Google Scholar 

  32. Tucker KG, Kelly T, Delgrazia P, Thomas CR (1992) Fully-automatic measurement of mycelial morphology by image analysis. Biotechnol Prog 8:353–359. doi:10.1021/bp00016a013

    Article  CAS  Google Scholar 

  33. Spohr A, Dam-Mikkelsen C, Carlsen M, Nielsen J, Villadsen J (1998) On-line study of fungal morphology during submerged growth in a small flow-through cell. Biotechnol Bioeng 58:541–553. doi:10.1002/(SICI)1097-0290(19980605)58:5<;541::AID-BIT11>;3.0.CO;2-E

    PubMed  Article  CAS  Google Scholar 

  34. El-Sabbagh N, McNeil B, Harvey LM (2006) Dissolved carbon dioxide effects on growth, nutrient consumption, penicillin synthesis and morphology in batch cultures of Penicillium chrysogenum. Enzyme Microb Technol 39:185–190. doi:10.1016/j.enzmictec.2005.10.020

    Article  CAS  Google Scholar 

  35. Packer HL, Thomas CR (1990) Morphological measurements on filamentous microorganisms by fully automatic image analysis. Biotechnol Bioeng 35:870–881. doi:10.1002/bit.260350904

    PubMed  Article  CAS  Google Scholar 

  36. Obert M, Pfeifer P, Sernetz M (1990) Microbial growth patterns described by fractal geometry. J Bacteriol 172:1180–1185

    PubMed  CAS  Google Scholar 

  37. Li ZJ, Shukla V, Wenger KS, Fordyce AP, Pedersen AG, Marten MR (2002) Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnol Prog 18:437–444. doi:10.1021/bp020023c

    PubMed  Article  CAS  Google Scholar 

  38. Papagianni M, Mattey M (2006) Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology. Microb Cell Fact 5:3. doi:10.1186/1475-2859-5-3

    PubMed  Article  CAS  Google Scholar 

  39. Barry DJ, Chan C, Williams GA (2007) Nitrocellulose as a general tool for fungal slide mounts. J Clin Microbiol 45:1074–1075. doi:10.1128/JCM.01609-06

    PubMed  Article  Google Scholar 

  40. Drouin JF, Louvel L, Vanhoutte B, Vivier H, Pons MN, Germain P (1997) Quantitative characterization of cellular differentiation of Streptomyces ambofaciens in submerged culture by image analysis. Biotechnol Tech V11:819–824. doi:10.1023/A:1018429425800

    Article  Google Scholar 

  41. Agger T, Spohr AB, Carlsen M, Nielsen J (1998) Growth and product formation of Aspergillus oryzae during submerged cultivations: verification of a morphologically structured model using fluorescent probes. Biotechnol Bioeng 57:321–329. doi:10.1002/(SICI)1097-0290(19980205)57:3<;321::AID-BIT9>;3.0.CO;2-J

    PubMed  Article  CAS  Google Scholar 

  42. Paul GC, Kent CA, Thomas CR (1993) Viability testing and characterization of germination of fungal spores by automatic image analysis. Biotechnol Bioeng 42:11–23. doi:10.1002/bit.260420103

    PubMed  Article  CAS  Google Scholar 

  43. Christiansen T, Spohr AB, Nielsen J (1999) On-line study of growth kinetics of single hyphae of Aspergillus oryzae in a flow-through cell. Biotechnol Bioeng 63:147–153. doi:10.1002/(SICI)1097-0290(19990420)63:2<;147::AID-BIT3>;3.0.CO;2-M

    PubMed  Article  CAS  Google Scholar 

  44. Bartnicki-Garcia S, Bracker CE, Gierz G, Lopez-Franco R, Lu H (2000) Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor. Biophys J 79:2382–2390

    PubMed  Article  CAS  Google Scholar 

  45. Dieguez-Uribeondo J, Gierz G, Bartnicki-Garcia S (2004) Image analysis of hyphal morphogenesis in Saprolegniaceae (Oomycetes). Fungal Genet Biol 41:293–307. doi:10.1016/j.fgb.2003.10.012

    PubMed  Article  Google Scholar 

  46. Rahardjo YS, Sie S, Weber FJ, Tramper J, Rinzema A (2005) Effect of low oxygen concentrations on growth and alpha-amylase production of Aspergillus oryzae in model solid-state fermentation systems. Biomol Eng 21:163–172

    PubMed  CAS  Google Scholar 

  47. Papagianni M (2006) Quantification of the fractal nature of mycelial aggregation in Aspergillus niger submerged cultures. Microb Cell Fact 5:5. doi:10.1186/1475-2859-5-5

    PubMed  Article  CAS  Google Scholar 

  48. Wilson J (2002) Towards the automated evaluation of crystallization trials. Acta Crystallogr D Biol Crystallogr 58:1907–1914. doi:10.1107/S0907444902016633

    PubMed  Article  CAS  Google Scholar 

  49. Pazoti MA, Garcia RE, Pessoa JDC, Bruno OM (2005) Comparison of shape analysis methods for Guinardia citricarpa ascospore characterization. Electron J Biotechnol 8:3

    Article  Google Scholar 

  50. Cross D, Kenerley CM (2004) Modelling the growth of Trichoderma virens with limited sampling of digital images. J Appl Microbiol 97:486–494. doi:10.1111/j.1365-2672.2004.02310.x

    PubMed  Article  CAS  Google Scholar 

  51. Jones CL (1996) 2-D wavelet packet analysis of structural self-organisation and morphogenic regulation in filamentous fungal colonies. Complex Int 3:1

    CAS  Google Scholar 

  52. Hitchcock D, Glasbey CA, Ritz K (1996) Image analysis of space-filling by networks: application to a fungal mycelium. Biotechnol Tech 10:205–210. doi:10.1007/BF00158947

    Article  CAS  Google Scholar 

  53. Reichl U, Yang H, Gilles ED, Wolf H (1990) An improved method for measuring the interseptal spacing in hyphae of Streptomyces tendae by fluorescence microscopy coupled with image processing. FEMS Microbiol Lett 67:207–210. doi:10.1111/j.1574-6968.1990.tb13864.x

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by a grant from the Technological Sector Research, Strand 1 Postgraduate R&D Skills Programme. We thank P. Taylor for her technical assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwilym A. Williams.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barry, D.J., Chan, C. & Williams, G.A. Morphological quantification of filamentous fungal development using membrane immobilization and automatic image analysis. J Ind Microbiol Biotechnol 36, 787 (2009). https://doi.org/10.1007/s10295-009-0552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10295-009-0552-9

Keywords

  • Fungal morphology
  • Membrane immobilization
  • Automatic image analysis
  • Growth kinetics
  • Solid-state fermentation