GPS Solutions

, 22:55 | Cite as

Performance of various predicted GNSS global ionospheric maps relative to GPS and JASON TEC data

  • Min Li
  • Yunbin Yuan
  • Ningbo Wang
  • Zishen Li
  • Xingliang Huo
Original Article


When using predicted total electron content (TEC) products to generate preliminary real-time global ionospheric maps (GIMs), validation of these ionospheric predicted products is essential. In this study, we evaluate the accuracy of five predicted GIMs, provided by the international GNSS service (IGS), over continental and oceanic regions during the period from September 2009 to September 2015. Over continental regions, the GPS TEC data collected from 41 IGS continuous tracking stations are used as a reference data set. Over oceanic regions, the TEC data from the JASON altimeter are used for comparison. An initial performance comparison between the IGS combined final GIM product and the predicted GIMs is also included in this study. The evaluation results show that the predicted GIMs produced by CODE outperform the other predicted GIMs for all three validation results. The accuracy of the 1-day predicted GIMs, produced by the IGS associate analysis centers (IAACs), is higher than that of the 2-day predicted GIMs. Compared to the 2-day UPC predicted GIMs, the 2-day ESA predicted GIMs are observed to have slightly worse performances over ocean regions and better positioning performances over continental regions.


GNSS Total electron content (TEC) Predicted global ionospheric maps (GIMs) JASON altimeter 



Many thanks are due to the IGS for providing access to the ionospheric GIM products. This work was supported by the National Key Research Program of China “Collaborative Precision Positioning Project” (No. 2016YFB0501900), China Natural Science Funds (No. 41231064, 41674022, 41704038, 41574033 and 41621091), and the State Key Laboratory of Geodesy and Earth’s Dynamics (SKLGED2017-3-1-EZ).


  1. Azpilicueta F, Brunini C (2009) Analysis of the bias between TOPEX and GPS vTEC determinations. J Geod 83(2):121–127CrossRefGoogle Scholar
  2. Brunini C, Azpilicueta FJ (2009) Accuracy assessment of the GPS-based slant total electron content. J Geod 83(8):773–785. CrossRefGoogle Scholar
  3. Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84(5):293–304CrossRefGoogle Scholar
  4. Brunini C, Meza A, Bosch W (2005) Temporal and spatial variability of the bias between TOPEX-and GPS-derived total electron content. J Geod 79(4–5):175–188CrossRefGoogle Scholar
  5. Cander LR (2003) Towards forecasting and mapping ionospheric space weather under COST actions. Adv Space Res 31(4):957–964CrossRefGoogle Scholar
  6. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120CrossRefGoogle Scholar
  7. Feltens J (2003) The activities of the ionosphere working group of the international GPS service (IGS). GPS Solut 7(1):41–46. CrossRefGoogle Scholar
  8. Feltens J, Angling M, Jackson-Booth N, Jakowski N, Hoque M, Hernández-Pajares M, Aragón-Àngel A, Orus R, Zandbergen R (2011) Comparative testing of four ionospheric models driven with GPS measurements. Radio Sci 46(6):RS0D12. CrossRefGoogle Scholar
  9. García-Rigo A, Monte E, Hernández-Pajares M, Juan J, Sanz J, Aragón-Angel A, Salazar D (2011) Global prediction of the vertical total electron content of the ionosphere based on GPS data. Radio Sci 46(6):RS0D25. CrossRefGoogle Scholar
  10. Gulyaeva TL, Arikan F, Hernandez-Pajares M, Stanislawska I (2013) GIM-TEC adaptive ionospheric weather assessment and forecast system. J Atmos Sol Terr Phys 102:329–340. CrossRefGoogle Scholar
  11. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. CrossRefGoogle Scholar
  12. Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orus-Pérez R (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geod 91(12):1405–1414. CrossRefGoogle Scholar
  13. Hoque MM, Jakowski N, Berdermann J (2017) Ionospheric correction using NTCM driven by GPS Klobuchar coefficients for GNSS applications. GPS Solut 21(4):1563–1572. CrossRefGoogle Scholar
  14. Jee G, Lee HB, Kim Y, Chung JK, Cho J (2010) Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: ionospheric perspective. J Geophys Res Space Phys. Google Scholar
  15. Keshin M (2012) A new algorithm for single receiver DCB estimation using IGS TEC maps. GPS Solut 16(3):283–292CrossRefGoogle Scholar
  16. Komjathy A, Langley R (1996) An assessment of predicted and measured ionospheric total electron content using a regional GPS network. In: Proceedings of ION NTM 1996, Institute of Navigation, Santa Monica, CA, 22–24 JanuaryGoogle Scholar
  17. Komjathy A, Sparks L, Mannucci AJ, Coster A (2005) The ionospheric impact of the October 2003 storm event on Wide Area Augmentation System. GPS Solut 9(1):41–50. CrossRefGoogle Scholar
  18. Krankowski A, Kosek W, Baran L, Popinski W (2005) Wavelet analysis and forecasting of VTEC obtained with GPS observations over European latitudes. J Atmos Sol Terr Phys 67(12):1147–1156CrossRefGoogle Scholar
  19. Lambin J, Morrow R, Fu L-L, Willis JK, Bonekamp H, Lillibridge J, Perbos J, Zaouche G, Vaze P, Bannoura W (2010) The OSTM/Jason-2 mission. Mar Geod 33(S1):4–25CrossRefGoogle Scholar
  20. Lee HB, Jee G, Kim YH, Shim JS (2013) Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite. J Geophys Res Space Phys 118(2):935–946CrossRefGoogle Scholar
  21. Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, New YorkGoogle Scholar
  22. Li M, Yuan Y, Wang N, Li Z, Li Y, Huo X (2017) Estimation and analysis of Galileo differential code biases. J Geod 91(3):279–293CrossRefGoogle Scholar
  23. Luo W, Liu Z, Li M (2013) A preliminary evaluation of the performance of multiple ionospheric models in low- and mid-latitude regions of China in 2010–2011. GPS Solut 18(2):297–308. CrossRefGoogle Scholar
  24. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582. CrossRefGoogle Scholar
  25. Orus R, Hernandez-Pajares M, Juan JM, Sanz J, Garcia-Fernandez M (2002) Performance of different TEC models to provide GPS ionospheric corrections. J Atmos Sol Terr Phys 64(18):2055–2062CrossRefGoogle Scholar
  26. Orus R, Cander LR, Hernandez-Pajares M (2007) Testing regional vertical total electron content maps over Europe during the 17–21 January 2005 sudden space weather event. Radio Sci 42(3):RS3004. CrossRefGoogle Scholar
  27. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System. Doctoral dissertation, Univ. Bern, SwitzerlandGoogle Scholar
  28. Wang N, Yuan Y, Li Z, Huo X (2016) Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections. Adv Space Res 57(7):1555–1569. CrossRefGoogle Scholar
  29. Wang N, Yuan Y, Li Z, Li Y, Huo X, Li M (2017) An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solut 21(2):605–615CrossRefGoogle Scholar
  30. Wielgosz P, Grejner-Brzezinska D, Kashani I (2003) Regional ionosphere mapping with kriging and multiquadric methods. J Glob Position Syst 2(1):48–55CrossRefGoogle Scholar
  31. Yuan Y, Tscherning CC, Knudsen P, Xu G, Ou J (2008) The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS. J Geod 82(1):1–8. CrossRefGoogle Scholar
  32. Yuan Y, Li Z, Wang N, Zhang B, Li H, Li M, Huo X, Ou J (2015) Monitoring the ionosphere based on the Crustal Movement Observation Network of China. Geod Geodyn 6(2):73–80. CrossRefGoogle Scholar
  33. Zolesi B, Cander LR (2014) Ionospheric prediction and forecasting. Springer, Berlin. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Geodesy and Earth’s DynamicsInstitute of Geodesy and GeophysicsWuhanChina
  2. 2.Academy of Opto-ElectronicsChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations