Skip to main content
Log in

Beidou satellite maneuver thrust force estimation for precise orbit determination

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Beidou satellites, especially geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites, need to be frequently maneuvered to keep them in position due to various perturbations. The satellite ephemerides are not available during such maneuver periods. Precise estimation of thrust forces acting on satellites would provide continuous ephemerides during maneuver periods and could significantly improve orbit accuracy immediately after the maneuver. This would increase satellite usability for both real-time and post-processing applications. Using 1 year of observations from the Multi-GNSS Experiment network (MGEX), we estimate the precise maneuver periods for all Beidou satellites and the thrust forces. On average, GEO and IGSO satellites in the Beidou constellation are maneuvered 12 and 2 times, respectively, each year. For GEO satellites, the maneuvers are mainly in-plane, while out-of-plane maneuvers are observed for IGSO satellites and a small number of GEO satellites. In most cases, the Beidou satellite maneuver periods last 15–25 min, but can be as much as 2 h for the few out-of-plane maneuvers of GEO satellites. The thrust forces acting on Beidou satellites are normally in the order of 0.1–0.7 mm/s2. This can cause changes in velocity of GEO/IGSO satellites in the order of several decimeters per second. In the extreme cases of GEO out-of-plane maneuvers, very large cross-track velocity changes are observed, namely 28 m/s, induced by 5.4 mm/s2 thrust forces. Also, we demonstrate that by applying the estimated thrust forces in orbit integration, the orbit errors can be estimated at decimeter level in along- and cross-track directions during normal maneuver periods, and 1–2 m in all the orbital directions for the enormous GEO out-of-plane maneuver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • BeiDou ICD (2013) BeiDou navigation satellite system signal in space interface control document open service signal (version 2.0). http://en.beidou.gov.cn/beidoupolicy.html

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19(6):367–386

    Google Scholar 

  • Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geodesy 83(3–4):353–365. https://doi.org/10.1007/s00190-008-0281-2

    Article  Google Scholar 

  • Du L, Zhang Z, Zhang J, Liu L, Guo R, He F (2014) An 18-element GEO broadcast ephemeris based on non-singular elements. GPS Solut 19(1):49–59. https://doi.org/10.1007/s10291-014-0364-x

    Article  Google Scholar 

  • Gienger G, Pereira FL (2012) Towards Automated Determination of Orbit Maneuvers for GNSS Satellites. In: Conference on dynamics and control of space systems, Porto, Portugal, March. pp 131–150

  • Hugentobler U (1998) Astrometry and satellite orbits: theoretical considerations and typical applications, (Schweizerische Geodätische Kommission, Zürich 1998), Geodätisch-geophysikalische Arbeiten in der Schweiz

  • Hugentobler U, Ploner M, Schildnecht T, Beutler G (1999) Determination of resonant geopotential terms using optical observations of geostationary satellites. Adv Space Res 23(4):767–770

    Article  Google Scholar 

  • Jäggi A, Montenbruck O, Moon Y, Wermuth M, König R, Michalak G, Bock H, Bodenmann D (2012) Inter-agency comparison of TanDEM-X baseline solutions. Adv Space Res 50(2):260–271. https://doi.org/10.1016/j.asr.2012.03.027

    Article  Google Scholar 

  • Ju B, Gu D, Herring TA, Allende-Alba G, Montenbruck O, Wang Z (2017) Precise orbit and baseline determination for maneuvering low earth orbiters. GPS Solut 21(1):53–64. https://doi.org/10.1007/s10291-015-0505-x

    Article  Google Scholar 

  • Kelecy T, Hall D, Hamada K, Stocker MD (2007) Satellite maneuver detection using two-line element (TLE) data. In: Proceedings of the advanced Maui optical and space surveillance technologies conference, Maui, Hawaii, 12–15 Sept, pp 166–181

  • Lou Y, Liu Y, Shi C, Wang B, Yao X, Zheng F (2016) Precise orbit determination of BeiDou constellation: method comparison. GPS Solut 20(2):259–268. https://doi.org/10.1007/s10291-014-0436-y

    Article  Google Scholar 

  • Patera RP (2008) Space event detection method. J Spacecr Rockets 45(3):554–559. https://doi.org/10.2514/1.30348

    Article  Google Scholar 

  • Prange L, Orliac E, Dach R, Arnold D, Beutler G, Schaer S, Jäggi A (2016) CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis. J Geodesy 91(4):345–360. https://doi.org/10.1007/s00190-016-0968-8

    Article  Google Scholar 

  • Sehnal L (1960) The perturbations of the orbit of the stationary satellite of the Earth. Bull Astron Inst Czechoslov 11:132

    Google Scholar 

  • Song WD, Wang RL, Wang J (2012) A simple and valid analysis method for orbit anomaly detection. Adv Space Res 49(2):386–391. https://doi.org/10.1016/j.asr.2011.10.007

    Article  Google Scholar 

  • Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of Compass GEO and IGSO satellites. J Geodesy 87(6):515–525. https://doi.org/10.1007/s00190-013-0625-4

    Article  Google Scholar 

  • Xie J, Wang J, Mi H (2012) Analysis of Beidou navigation satellites in-orbit state. In: Sun J, Liu J, Yang Y, Fan S (eds) Proceedings of China satellite navigation conference (CSNC) 2012. Springer, Berlin, pp 111–122. https://doi.org/10.1007/978-3-642-29193-7_10

  • Yoon Y, Montenbruck O, Kirschner M (2006) Precise maneuver calibration for remote sensing satellites. In: Proceedings of the 19th international symposium on space flight dynamics, Kanazawa, June 4–11, pp 607–612

  • Zhang J, Qiu H, Yang Y, Guo W (2013) Application of thrust force model in GEO’s orbit determination in case of Maneuvers. In: Sun J, Jiao W, Wu H, Shi C (eds) Proceedings of China satellite navigation conference (CSNC) 2013. Springer, Berlin, pp 55–66. https://doi.org/10.1007/978-3-642-37407-4_5

  • Zhao QL, Guo J, Li M, Qu LZ, Hu ZG, Shi C, Liu JN (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geodesy 87(5):475–486. https://doi.org/10.1007/s00190-013-0622-7

    Article  Google Scholar 

Download references

Acknowledgements

The work was substantially supported by Grants from The Hong Kong RGC Joint Research Scheme (E-PolyU501/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J., Chen, W. Beidou satellite maneuver thrust force estimation for precise orbit determination. GPS Solut 22, 42 (2018). https://doi.org/10.1007/s10291-018-0705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-018-0705-2

Keywords

Navigation