Skip to main content
Log in

Assessment of a TEC calibration procedure by single-frequency PPP

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Global navigation satellite system (GNSS) measurements have become an outstanding data source for ionospheric studies using total electron content (TEC) estimation procedures. Many methods for TEC estimation had been developed over recent decades, but none of them is capable of providing high accuracy for the single-frequency precise point positioning (PPP). We present an analysis of the performance of a new TEC calibration procedure when applied to PPP. TEC estimation is assessed by calculating the improvements obtained in single-frequency PPP in kinematic mode. A total of 120 days with six distinct configurations of base and rover stations was used, and the TEC performance is assessed by applying the estimated TEC from the base station to correct the ionospheric delay in a nearby rover receiver. The single-frequency PPP solution in the rover station reached centimeter accuracy similar to the ionospheric-free PPP solution. Further, the TEC calibration method presented an improvement of about 74% compared to the PPP using the global ionospheric maps. We, therefore, confirm that it is possible to estimate high-precision TEC for accurate PPP applications, which enables us to conclude that the principal challenge of the GNSS community developing ionospheric models is not the differential code bias or the temporal variation of the ionosphere, but the development of methods for accurate spatial interpolation of the slant TEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alizadeh MM, Schuh H, Schmidt M (2015) Ray tracing technique for global 3-D modeling of ionospheric electron density using GNSS measurements. Radio Sci 50(6):539–553

    Article  Google Scholar 

  • Arikan F, Nayir H, Sezen U, Arikan O (2008) Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci 43(4):RS4004

    Article  Google Scholar 

  • Azpilicueta F, Brunini C, Radicella SM (2006) Global ionospheric maps from GPS observations using modip latitude. Adv Space Res 38(11):2324–2331

    Article  Google Scholar 

  • Biqiang Z, Weixing W, Libo L, Tian M (2007) Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps. Ann Geophys 25(7):1555–1568

    Article  Google Scholar 

  • Brunini C, Meza A, Azpilicueta F, Van Zele MA, Gende M, Díaz A (2004) A new ionosphere monitoring technology based on GPS. Astrophys Space Sci 290(3):415–429

    Article  Google Scholar 

  • Bust GS, Mitchell CN (2008) History, current state, and future directions of ionospheric imaging. Rev Geophys 46(1):RG1003

    Article  Google Scholar 

  • Camargo PO, Monico JFG, Ferreira LDD (2000) Application of ionospheric corrections in the equatorial region for L1 GPS users. Earth Planets Space 52(11):1083–1089

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120

    Article  Google Scholar 

  • Coco DS, Coker C, Dahlke SR, Clynch JR (1991) Variability of GPS satellite differential group delay biases. IEEE Trans Aerosp Electron Syst 27(6):931–938

    Article  Google Scholar 

  • Datta-Barua S, Lee J, Pullen S, Luo M, Ene A, Qiu D, Zhang G, Enge P (2010) Ionospheric threat parameterization for local area global-positioning-system-based aircraft landing systems. J Aircr 47(4):1141–1151

    Article  Google Scholar 

  • Durmaz M, Karslioğlu MO (2015) Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS). J Geod 89(4):347–360

    Article  Google Scholar 

  • Elmas ZG, Aquino M, Marques HA, Monico JFG (2011) Higher order ionospheric effects in GNSS positioning in the European region. Ann Geophys 29(8):1383–1399

    Article  Google Scholar 

  • Feltens J (1998) Chapman profile approach for 3-D global TEC representation, IGS presentation. In: Proceedings of the 1998 IGS analysis centers workshop, ESOC, Darmstadt, Germany, 9–11 Feb 1998, pp 285–297

  • Georgiadiou Y (1994) Modelling the ionosphere for an active control network of GPS stations. LGR series 7. Delft Geodetic Computing Centre, Delft

    Google Scholar 

  • Hajj GA, Wilson BD, Wang C, Pi X, Rosen IG (2004) Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter. Radio Sci 39:RS1S05

    Article  Google Scholar 

  • He H, Li J, Yang Y, Xu J, Guo H, Wang A (2014) Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solut 18(3):393–403

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61(16):1237–1247

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3):263–275

    Article  Google Scholar 

  • Jin SG, Jin R, Li D (2016) Assessment of Beidou differential code bias variations from multi-GNSS network observations. Ann Geophys 34(2):259–269

    Article  Google Scholar 

  • Le AQ, Tiberius C (2007) Single-frequency precise point positioning with optimal filtering. GPS Solut 11(1):61–69

    Article  Google Scholar 

  • Li Z, Yuan Y, Li H, Ou J, Huo X (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geod 86(11):1059–1076

    Article  Google Scholar 

  • Li X, Ge M, Zhang H, Wickert J (2013) A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. J Geod 87(5):405–416

    Article  Google Scholar 

  • Lin CH, Richmond AD, Liu JY, Yeh HC, Paxton LJ, Lu G, Tsai HF, Su S-Y (2005) Large-scale variations of the low-latitude ionosphere during the October–November 2003 superstorm: observational results. J Geophys Res 110(A9):A09S28

    Article  Google Scholar 

  • Macalalad EP, Tsai L-C, Wu J (2016) Performance evaluation of different ionospheric models in single-frequency code-based differential GPS positioning. GPS Solut 20(2):173–185

    Article  Google Scholar 

  • Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582

    Article  Google Scholar 

  • Marques HA, Monico JFG, Aquino M (2011) Rinex HO: second-and third-order ionospheric corrections for RINEX observation files. GPS Solut 15(3):305–314

    Article  Google Scholar 

  • Migoya-Orué Y, Nava B, Radicella SM, Alazo-Cuartas K (2015) GNSS derived TEC data ingestion into IRI 2012. Adv Space Res 55(8):1994–2002

    Article  Google Scholar 

  • Mitchell CN, Spencer PSJ (2003) A three-dimensional time-dependent algorithm for ionospheric imaging using GPS. Ann Geophys 46(4):687–696

    Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. J Inst Navig 61(3):191–201

    Article  Google Scholar 

  • Otsuka Y, Ogawa T, Saito A, Tsugawa T, Fukao S, Miyazaki S (2002) A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space 54(1):63–70

    Article  Google Scholar 

  • Ø-vstedal O (2002) Absolute positioning with single-frequency GPS receivers. GPS Solut 5(4):33–44

    Article  Google Scholar 

  • Prol FS, Camargo PO (2014) Estimativa da tendência diferencial do código nos receptores GNSS. Bol Ciências Geod 20(4):735–749

    Article  Google Scholar 

  • Prol FS, Camargo PO (2016) Ionospheric tomography using GNSS: multiplicative algebraic reconstruction technique applied to the area of Brazil. GPS Solut 20(4):807–814

    Article  Google Scholar 

  • Sardón E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32(5):1899–1910

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. Ph.D. Dissertation, Astronomical Institute, University of Berne, Berne, Switzerland, 25 March

  • Schunk RW, Scherliess L, Sojka JJ, Thompson DC, Anderson DN, Codrescu M, Minter C, Fuller-Rowell TJ, Heelis RA, Hairston M, Howe BM (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci 39(1):RS1S02

    Article  Google Scholar 

  • Sterle O, Stopar B, Prešeren PP (2015) Single-frequency precise point positioning: an analytical approach. J Geod 89(8):793–810

    Article  Google Scholar 

  • Takasu T, Yasuda A (2009) Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: International symposium on GPS/GNSS, Seogwipo-si Jungmun-dong, Korea, 4–6 Nov

  • Wen D, Wang Y, Norman R (2012) A new two-step algorithm for ionospheric tomography solution. GPS Solut 16(1):89–94

    Article  Google Scholar 

  • Wild U (1994) Ionosphere and satellite systems: permanent GPS tracking data for modelling and monitoring. Geodätisch-geophysikalische Arbeiten in der Schweiz, band 48

Download references

Acknowledgements

This work was jointly funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Grant: 2015/15027-7) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grants: 304674/2014-1 and 429885/2016-4). The authors are grateful to CODE for providing IONEX files, Instituto Brasileiro de Geografia e Estatística (IBGE) and IGS for providing data from dual-frequency GNSS receivers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio dos Santos Prol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prol, F.d.S., Camargo, P.d.O., Monico, J.F.G. et al. Assessment of a TEC calibration procedure by single-frequency PPP. GPS Solut 22, 35 (2018). https://doi.org/10.1007/s10291-018-0701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-018-0701-6

Keywords

Navigation