GPS Solutions

, 22:35 | Cite as

Assessment of a TEC calibration procedure by single-frequency PPP

  • Fabricio dos Santos Prol
  • Paulo de Oliveira Camargo
  • João Francisco Galera Monico
  • Marcio Tadeu de Assis Honorato Muella
Original Article


Global navigation satellite system (GNSS) measurements have become an outstanding data source for ionospheric studies using total electron content (TEC) estimation procedures. Many methods for TEC estimation had been developed over recent decades, but none of them is capable of providing high accuracy for the single-frequency precise point positioning (PPP). We present an analysis of the performance of a new TEC calibration procedure when applied to PPP. TEC estimation is assessed by calculating the improvements obtained in single-frequency PPP in kinematic mode. A total of 120 days with six distinct configurations of base and rover stations was used, and the TEC performance is assessed by applying the estimated TEC from the base station to correct the ionospheric delay in a nearby rover receiver. The single-frequency PPP solution in the rover station reached centimeter accuracy similar to the ionospheric-free PPP solution. Further, the TEC calibration method presented an improvement of about 74% compared to the PPP using the global ionospheric maps. We, therefore, confirm that it is possible to estimate high-precision TEC for accurate PPP applications, which enables us to conclude that the principal challenge of the GNSS community developing ionospheric models is not the differential code bias or the temporal variation of the ionosphere, but the development of methods for accurate spatial interpolation of the slant TEC.


GIM Kinematic PPP DCB GPS Ionospheric delay 



This work was jointly funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Grant: 2015/15027-7) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grants: 304674/2014-1 and 429885/2016-4). The authors are grateful to CODE for providing IONEX files, Instituto Brasileiro de Geografia e Estatística (IBGE) and IGS for providing data from dual-frequency GNSS receivers.


  1. Alizadeh MM, Schuh H, Schmidt M (2015) Ray tracing technique for global 3-D modeling of ionospheric electron density using GNSS measurements. Radio Sci 50(6):539–553CrossRefGoogle Scholar
  2. Arikan F, Nayir H, Sezen U, Arikan O (2008) Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci 43(4):RS4004CrossRefGoogle Scholar
  3. Azpilicueta F, Brunini C, Radicella SM (2006) Global ionospheric maps from GPS observations using modip latitude. Adv Space Res 38(11):2324–2331CrossRefGoogle Scholar
  4. Biqiang Z, Weixing W, Libo L, Tian M (2007) Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps. Ann Geophys 25(7):1555–1568CrossRefGoogle Scholar
  5. Brunini C, Meza A, Azpilicueta F, Van Zele MA, Gende M, Díaz A (2004) A new ionosphere monitoring technology based on GPS. Astrophys Space Sci 290(3):415–429CrossRefGoogle Scholar
  6. Bust GS, Mitchell CN (2008) History, current state, and future directions of ionospheric imaging. Rev Geophys 46(1):RG1003CrossRefGoogle Scholar
  7. Camargo PO, Monico JFG, Ferreira LDD (2000) Application of ionospheric corrections in the equatorial region for L1 GPS users. Earth Planets Space 52(11):1083–1089CrossRefGoogle Scholar
  8. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella SM (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120CrossRefGoogle Scholar
  9. Coco DS, Coker C, Dahlke SR, Clynch JR (1991) Variability of GPS satellite differential group delay biases. IEEE Trans Aerosp Electron Syst 27(6):931–938CrossRefGoogle Scholar
  10. Datta-Barua S, Lee J, Pullen S, Luo M, Ene A, Qiu D, Zhang G, Enge P (2010) Ionospheric threat parameterization for local area global-positioning-system-based aircraft landing systems. J Aircr 47(4):1141–1151CrossRefGoogle Scholar
  11. Durmaz M, Karslioğlu MO (2015) Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS). J Geod 89(4):347–360CrossRefGoogle Scholar
  12. Elmas ZG, Aquino M, Marques HA, Monico JFG (2011) Higher order ionospheric effects in GNSS positioning in the European region. Ann Geophys 29(8):1383–1399CrossRefGoogle Scholar
  13. Feltens J (1998) Chapman profile approach for 3-D global TEC representation, IGS presentation. In: Proceedings of the 1998 IGS analysis centers workshop, ESOC, Darmstadt, Germany, 9–11 Feb 1998, pp 285–297Google Scholar
  14. Georgiadiou Y (1994) Modelling the ionosphere for an active control network of GPS stations. LGR series 7. Delft Geodetic Computing Centre, DelftGoogle Scholar
  15. Hajj GA, Wilson BD, Wang C, Pi X, Rosen IG (2004) Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter. Radio Sci 39:RS1S05CrossRefGoogle Scholar
  16. He H, Li J, Yang Y, Xu J, Guo H, Wang A (2014) Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solut 18(3):393–403CrossRefGoogle Scholar
  17. Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61(16):1237–1247CrossRefGoogle Scholar
  18. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3):263–275CrossRefGoogle Scholar
  19. Jin SG, Jin R, Li D (2016) Assessment of Beidou differential code bias variations from multi-GNSS network observations. Ann Geophys 34(2):259–269CrossRefGoogle Scholar
  20. Le AQ, Tiberius C (2007) Single-frequency precise point positioning with optimal filtering. GPS Solut 11(1):61–69CrossRefGoogle Scholar
  21. Li Z, Yuan Y, Li H, Ou J, Huo X (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geod 86(11):1059–1076CrossRefGoogle Scholar
  22. Li X, Ge M, Zhang H, Wickert J (2013) A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. J Geod 87(5):405–416CrossRefGoogle Scholar
  23. Lin CH, Richmond AD, Liu JY, Yeh HC, Paxton LJ, Lu G, Tsai HF, Su S-Y (2005) Large-scale variations of the low-latitude ionosphere during the October–November 2003 superstorm: observational results. J Geophys Res 110(A9):A09S28CrossRefGoogle Scholar
  24. Macalalad EP, Tsai L-C, Wu J (2016) Performance evaluation of different ionospheric models in single-frequency code-based differential GPS positioning. GPS Solut 20(2):173–185CrossRefGoogle Scholar
  25. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582CrossRefGoogle Scholar
  26. Marques HA, Monico JFG, Aquino M (2011) Rinex HO: second-and third-order ionospheric corrections for RINEX observation files. GPS Solut 15(3):305–314CrossRefGoogle Scholar
  27. Migoya-Orué Y, Nava B, Radicella SM, Alazo-Cuartas K (2015) GNSS derived TEC data ingestion into IRI 2012. Adv Space Res 55(8):1994–2002CrossRefGoogle Scholar
  28. Mitchell CN, Spencer PSJ (2003) A three-dimensional time-dependent algorithm for ionospheric imaging using GPS. Ann Geophys 46(4):687–696Google Scholar
  29. Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. J Inst Navig 61(3):191–201CrossRefGoogle Scholar
  30. Otsuka Y, Ogawa T, Saito A, Tsugawa T, Fukao S, Miyazaki S (2002) A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space 54(1):63–70CrossRefGoogle Scholar
  31. Ø-vstedal O (2002) Absolute positioning with single-frequency GPS receivers. GPS Solut 5(4):33–44CrossRefGoogle Scholar
  32. Prol FS, Camargo PO (2014) Estimativa da tendência diferencial do código nos receptores GNSS. Bol Ciências Geod 20(4):735–749CrossRefGoogle Scholar
  33. Prol FS, Camargo PO (2016) Ionospheric tomography using GNSS: multiplicative algebraic reconstruction technique applied to the area of Brazil. GPS Solut 20(4):807–814CrossRefGoogle Scholar
  34. Sardón E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32(5):1899–1910CrossRefGoogle Scholar
  35. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. Ph.D. Dissertation, Astronomical Institute, University of Berne, Berne, Switzerland, 25 MarchGoogle Scholar
  36. Schunk RW, Scherliess L, Sojka JJ, Thompson DC, Anderson DN, Codrescu M, Minter C, Fuller-Rowell TJ, Heelis RA, Hairston M, Howe BM (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci 39(1):RS1S02CrossRefGoogle Scholar
  37. Sterle O, Stopar B, Prešeren PP (2015) Single-frequency precise point positioning: an analytical approach. J Geod 89(8):793–810CrossRefGoogle Scholar
  38. Takasu T, Yasuda A (2009) Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: International symposium on GPS/GNSS, Seogwipo-si Jungmun-dong, Korea, 4–6 NovGoogle Scholar
  39. Wen D, Wang Y, Norman R (2012) A new two-step algorithm for ionospheric tomography solution. GPS Solut 16(1):89–94CrossRefGoogle Scholar
  40. Wild U (1994) Ionosphere and satellite systems: permanent GPS tracking data for modelling and monitoring. Geodätisch-geophysikalische Arbeiten in der Schweiz, band 48Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fabricio dos Santos Prol
    • 1
  • Paulo de Oliveira Camargo
    • 1
  • João Francisco Galera Monico
    • 1
  • Marcio Tadeu de Assis Honorato Muella
    • 2
  1. 1.Universidade Estadual Paulista – UNESPPresidente PrudenteBrazil
  2. 2.Laboratório de Física e Astronomia, IP&DUniversidade do Vale do Paraíba – UNIVAPSão José dos CamposBrazil

Personalised recommendations