Blunted sympathetic neurovascular transduction is associated to the severity of obstructive sleep apnea

Abstract

Purpose

Obstructive sleep apnea (OSA) is a common disorder (~ 4%) that augments sympathetic nerve activity (SNA) and elevates blood pressure. The relationship between sympathetic vasomotor outflow and vascular responsiveness, termed sympathetic neurovascular transduction (sNVT), has been sparsely characterized in patients with OSA. Therefore, we sought to quantify spontaneous sympathetic bursts and related changes in diastolic pressure.

Methods

Twelve participants with variable severities of OSA were recruited. We collected muscle sympathetic nerve activity (MSNA) (microneurography) and beat-by-beat diastolic pressure (finger photoplethysmography) during normoxia (FiO2 = 0.21) and hyperoxia (FiO2 = 1.0) to decrease MSNA burst frequency. MSNA burst sequences (i.e. singlets, doublets, triplets and quadruplets) were identified and coupled to changes in diastolic pressure over 15 cardiac cycles as an index of sNVT. sNVT slope for each individual was calculated from the slope of the relationship between peak responses in outcome plotted against normalized burst amplitude.

Results

sNVT slope was unchanged during hyperoxia compared to normoxia (normoxia 0.0024 ± 0.0011 Δ mmHg total activity [a.u.]−1 vs. hyperoxia 0.0029 ± 0.00098 Δ mmHg total activity [a.u.]−1; p = 0.14). sNVT slope was inversely associated with burst frequency during hyperoxia (r = −0.58; p = 0.04), but not normoxia (r = −0.11; p = 0.71). sNVT slope was inversely associated with the apnea–hypopnea index (AHI) (r = −0.62; p = 0.030), but not after age was considered.

Conclusions

We have demonstrated that the prevailing MSNA frequency is unmatched to the level of sNVT, and this can be altered by acute hyperoxia.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373(9657):82–93. https://doi.org/10.1016/S0140-6736(08)61622-0

    Article  PubMed  Google Scholar 

  2. 2.

    Capistrano A, Cordeiro A, Capelozza Filho L, Almeida VC, Silva PI, Martinez S, de Almeida-Pedrin RR (2015) Facial morphology and obstructive sleep apnea. Dental Press J Orthod 20(6):60–67. https://doi.org/10.1590/2177-6709.20.6.060-067.oar

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Hakim F, Gozal D, Gozal L (2012) Sympathetic and catecholaminergic alterations in sleep apnea with particular emphasis on children. Front Neurol. https://doi.org/10.3389/fneur.2012.00007

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Smith EG, Voyles WF, Kirby BS, Markwald RR, Dinenno FA (2007) Ageing and leg postjunctional alpha-adrenergic vasoconstrictor responsiveness in healthy men. J Physiol 582(Pt 1):63–71. https://doi.org/10.1113/jphysiol.2007.130591

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Tamisier R, Tan CO, Pepin JL, Levy P, Taylor JA (2015) Blood pressure increases in OSA due to maintained neurovascular sympathetic transduction: impact of CPAP. Sleep 38(12):1973–1980. https://doi.org/10.5665/sleep.5252

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Floras JS (2016) Sympathetic nervous system in patients with sleep related breathing disorders. Curr Hypertens Rev 12(1):18–26. https://doi.org/10.2174/1573402112666160114093359

    Article  PubMed  Google Scholar 

  7. 7.

    Somers VK, Dyken ME, Clary MP, Abboud FM (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96(4):1897–1904. https://doi.org/10.1172/jci118235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Taylor KS, Murai H, Millar PJ, Haruki N, Kimmerly DS, Morris BL, Tomlinson G, Bradley TD, Floras JS (2016) Arousal from sleep and sympathetic excitation during wakefulness. Hypertension 68(6):1467–1474. https://doi.org/10.1161/hypertensionaha.116.08212

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Grote L, Kraiczi H, Hedner J (2000) Reduced alpha- and beta(2)-adrenergic vascular response in patients with obstructive sleep apnea. Am J Respir Crit Care Med 162(4 Pt 1):1480–1487. https://doi.org/10.1164/ajrccm.162.4.9912028

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Steinback CD, Fraser GM, Usselman CW, Reyes LM, Julian CG, Stickland MK, Chari RS, Khurana R, Davidge ST, Davenport MH (2019) Blunted sympathetic neurovascular transduction during normotensive pregnancy. J Physiol 597(14):3687–3696. https://doi.org/10.1113/jp277714

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Tan CO, Tamisier R, Hamner JW, Taylor JA (2013) Characterizing sympathetic neurovascular transduction in humans. PLoS ONE 8(1):e53769–e53769. https://doi.org/10.1371/journal.pone.0053769

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hissen SL, Macefield VG, Brown R, Taylor CE (2019) Sympathetic baroreflex sensitivity is inversely related to vascular transduction in men but not women. Am J Physiol Heart Circ Physiol 317(6):H1203-h1209. https://doi.org/10.1152/ajpheart.00501.2019

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Briant LJ, Burchell AE, Ratcliffe LE, Charkoudian N, Nightingale AK, Paton JF, Joyner MJ, Hart EC (2016) Quantifying sympathetic neuro-haemodynamic transduction at rest in humans: insights into sex, ageing and blood pressure control. J Physiol 594(17):4753–4768. https://doi.org/10.1113/jp272167

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Berthelsen LF, Fraser GM, Simpson LL, Vanden Berg ER, Busch SA, Steele AR, Meah VL, Lawley JS, Figueroa-Mujíca R, Vizcardo Galindo GA, Villafuerte FC, Gasho C, Willie CK, Tymko MM, Ainslie PN, Stembridge M, Moore JP, Steinback CD (2020) Highs and lows of sympathetic neuro-cardiovascular transduction: influence of altitude acclimatization and adaptation. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.00364.2020

    Article  PubMed  Google Scholar 

  15. 15.

    Goyal M, Johnson J (2017) Obstructive sleep apnea diagnosis and management. Mo Med 114(2):120–124

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Phillips DB, Steinback CD, Collins SE, Fuhr DP, Bryan TL, Wong EYL, Tedjasaputra V, Bhutani M, Stickland MK (2018) The carotid chemoreceptor contributes to the elevated arterial stiffness and vasoconstrictor outflow in chronic obstructive pulmonary disease. J Physiol 596(15):3233–3244. https://doi.org/10.1113/jp275762

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Vranish JR, Holwerda SW, Young BE, Credeur DP, Patik JC, Barbosa TC, Keller DM, Fadel PJ (2018) Exaggerated vasoconstriction to spontaneous bursts of muscle sympathetic nerve activity in healthy young black men. Hypertension 71(1):192–198. https://doi.org/10.1161/hypertensionaha.117.10229

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Fairfax ST, Holwerda SW, Credeur DP, Zuidema MY, Medley JH, Dyke PC 2nd, Wray DW, Davis MJ, Fadel PJ (2013) The role of α-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man. J Physiol 591(14):3637–3649. https://doi.org/10.1113/jphysiol.2013.250894

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Usselman CW, Skow RJ, Matenchuk BA, Chari RS, Julian CG, Stickland MK, Davenport MH, Steinback CD (2015) Sympathetic baroreflex gain in normotensive pregnant women. J Appl Physiol (1985) 119(5):468–474. https://doi.org/10.1152/japplphysiol.00131.2015

    Article  Google Scholar 

  20. 20.

    Donadio V, Liguori R, Vetrugno R, Contin M, Elam M, Wallin BG, Karlsson T, Bugiardini E, Baruzzi A, Montagna P (2007) Daytime sympathetic hyperactivity in OSAS is related to excessive daytime sleepiness. J Sleep Res 16(3):327–332. https://doi.org/10.1111/j.1365-2869.2007.00602.x

    Article  PubMed  Google Scholar 

  21. 21.

    Imadojemu VA, Mawji Z, Kunselman A, Gray KS, Hogeman CS, Leuenberger UA (2007) Sympathetic chemoreflex responses in obstructive sleep apnea and effects of continuous positive airway pressure therapy. Chest 131(5):1406–1413. https://doi.org/10.1378/chest.06-2580

    Article  PubMed  Google Scholar 

  22. 22.

    Carlson JT, Hedner JA, Sellgren J, Elam M, Wallin BG (1996) Depressed baroreflex sensitivity in patients with obstructive sleep apnea. Am J Respir Crit Care Med 154(5):1490–1496. https://doi.org/10.1164/ajrccm.154.5.8912770

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ruzicka M, Knoll G, Leenen FHH, Leech J, Aaron SD, Hiremath S (2020) Effects of CPAP on blood pressure and sympathetic activity in patients with diabetes mellitus, chronic kidney disease, and resistant hypertension. CJC Open 2(4):258–264. https://doi.org/10.1016/j.cjco.2020.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fatouleh R, McKenzie DK, Macefield VG (2014) Respiratory modulation of muscle sympathetic nerve activity in obstructive sleep apnoea. Exp Physiol 99(10):1288–1298. https://doi.org/10.1113/expphysiol.2013.077511

    Article  PubMed  Google Scholar 

  25. 25.

    Goya TT, Silva RF, Guerra RS, Lima MF, Barbosa ER, Cunha PJ, Lobo DM, Buchpiguel CA, Busatto-Filho G, Negrão CE, Lorenzi-Filho G, Ueno-Pardi LM (2016) Increased muscle sympathetic nerve activity and impaired executive performance capacity in obstructive sleep apnea. Sleep 39(1):25–33. https://doi.org/10.5665/sleep.5310

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Narkiewicz K, Kato M, Phillips BG, Pesek CA, Davison DE, Somers VK (1999) Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea. Circulation 100(23):2332–2335. https://doi.org/10.1161/01.cir.100.23.2332

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG, Somers VK (1998) Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation 97(10):943–945. https://doi.org/10.1161/01.cir.97.10.943

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Gilmartin GS, Lynch M, Tamisier R, Weiss JW (2010) Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity. Am J Physiol Heart Circ Physiol 299(3):H925–H931. https://doi.org/10.1152/ajpheart.00253.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Ryan S, Ward S, Heneghan C, McNicholas WT (2007) Predictors of decreased spontaneous baroreflex sensitivity in obstructive sleep apnea syndrome. Chest 131(4):1100–1107. https://doi.org/10.1378/chest.06-2165

    Article  PubMed  Google Scholar 

  30. 30.

    Kheirandish-Gozal L, Gozal D (2019) Obstructive sleep apnea and inflammation: proof of concept based on two illustrative cytokines. Int J Mol Sci. https://doi.org/10.3390/ijms20030459

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Stuckless TJR, Vermeulen TD, Brown CV, Boulet LM, Shafer BM, Wakeham DJ, Steinback CD, Ayas NT, Floras JS, Foster GE (2020) Acute intermittent hypercapnic hypoxia and sympathetic neurovascular transduction in men. J Physiol 598(3):473–487. https://doi.org/10.1113/jp278941

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Narkiewicz K, van de Borne PJ, Pesek CA, Dyken ME, Montano N, Somers VK (1999) Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation 99(9):1183–1189. https://doi.org/10.1161/01.cir.99.9.1183

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Kraiczi H, Hedner J, Peker Y, Carlson J (2000) Increased vasoconstrictor sensitivity in obstructive sleep apnea. J Appl Physiol 89(2):493–498. https://doi.org/10.1152/jappl.2000.89.2.493

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Mills PJ, Dimsdale JE, Coy TV, Ancoli-Israel S, Clausen JL, Nelesen RA (1995) Beta 2-adrenergic receptor characteristics in sleep apnea patients. Sleep 18(1):39–42. https://doi.org/10.1093/sleep/18.1.39

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Yin Q, Yang C, Wu J, Lu H, Zheng X, Zhang Y, Lv Z, Zheng X, Li Z (2016) Downregulation of β-adrenoceptors in isoproterenol-induced cardiac remodeling through HuR. PLoS ONE 11(4):e0152005–e0152005. https://doi.org/10.1371/journal.pone.0152005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hart EC, Joyner MJ, Wallin BG, Johnson CP, Curry TB, Eisenach JH, Charkoudian N (2009) Age-related differences in the sympathetic-hemodynamic balance in men. Hypertension 54(1):127–133. https://doi.org/10.1161/hypertensionaha.109.131417

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Van Guilder GP, Westby CM, Greiner JJ, Stauffer BL, DeSouza CA (2007) Endothelin-1 vasoconstrictor tone increases with age in healthy men but can be reduced by regular aerobic exercise. Hypertension 50(2):403–409. https://doi.org/10.1161/hypertensionaha.107.088294

    Article  PubMed  Google Scholar 

  38. 38.

    Bleeke T, Zhang H, Madamanchi N, Patterson C, Faber JE (2004) Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species. Circ Res 94(1):37–45. https://doi.org/10.1161/01.Res.0000109412.80157.7d

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Montesano M, Miano S, Paolino MC, Massolo AC, Ianniello F, Forlani M, Villa MP (2010) Autonomic cardiovascular tests in children with obstructive sleep apnea syndrome. Sleep 33(10):1349–1355. https://doi.org/10.1093/sleep/33.10.1349

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Natural Sciences and Engineering Research Council of Canada (NSERC; GMF RGPIN 05205 & CDS RGPIN 06637).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Craig D. Steinback.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steele, A.R., Berthelsen, L.F., Fraser, G.M. et al. Blunted sympathetic neurovascular transduction is associated to the severity of obstructive sleep apnea. Clin Auton Res (2021). https://doi.org/10.1007/s10286-021-00784-8

Download citation

Keywords

  • Obstructive sleep apnea
  • Muscle sympathetic nerve activity
  • Sympatho-excitation activity
  • Blood pressure
  • Sympathetic neurovascular transduction