Skip to main content
Log in

Deceleration and acceleration capacities of heart rate in patients with drug-resistant epilepsy

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Objective

Epilepsy and seizures can have dramatic effects on cardiac function. The aim of the present study was to investigate deceleration capacity, acceleration capacity and their 24-h fluctuations of heart rate variability in patients with drug-resistant epilepsy.

Methods

Deceleration capacity, acceleration capacity of heart rate and their 24-h dynamics derived from the phase rectified signal averaging method as well as traditional measures were analyzed in 39 patients with drug-resistant epilepsy and 33 healthy control subjects using 24-h electrocardiogram recordings. The discriminatory power of heart rate variability measures were validated by assessment of the area under the receiver operating characteristic curve. Net reclassification improvement and integrated discrimination improvement models were also estimated.

Results

Both deceleration capacity and absolute values of acceleration capacity were significantly lower in patients with drug-resistant epilepsy. The abnormal suppression of absolute deceleration capacity and acceleration capacity values were observed throughout the 24-h recording time (peaked at about 3 to 5 A.M.). Deceleration capacity had the greatest discriminatory power to differentiate the patients from the healthy controls. Moreover, in both net reclassification improvement and integrated discrimination improvement models, the combination of acceleration capacity or deceleration capacity with traditional heart rate variability measures has greater discriminatory power than any of the single heart rate variability features.

Interpretation

Drug-resistant epilepsy was associated with a significant inhibition of vagal modulation of heart rate, which was more pronounced during the night than during the day. These findings indicate that phase rectified signal averaging method may serve as a complementary approach for characterizing and understanding the neuro-pathophysiology in epilepsy, and may provide a new clue to sudden unexpected death in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moshé SL, Perucca E, Ryvlin R, Tomson T (2015) Epilepsy: new advances. Lancet 385:884–898

    Article  PubMed  Google Scholar 

  2. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshé SL, Perucca E, Wiebe S, French J (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51:1069–1077

    Article  CAS  PubMed  Google Scholar 

  3. Sevcencu C, Struijk JJ (2010) Autonomic alterations and cardiac changes in epilepsy. Epilepsia 51:725–737

    Article  PubMed  Google Scholar 

  4. Romigi A, Albanese M, Placidi F, Izzi F, Mercuri NB, Marchi A, Liguori C, Campagna N, Duggento A, Canichella A, Ricciardo RG, Guerrisi M, Marciani MG, Toschi N (2016) Heart rate variability in untreated newly diagnosed temporal lobe epilepsy: evidence for ictal sympathetic dysregulation. Epilepsia 57:418–426

    Article  PubMed  Google Scholar 

  5. Massey CA, Sowers LP, Dlouhy BJ, Richerson GB (2014) Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nat Rev Neurol 10:271–282

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ryvlin P, Nashef L, Tomson T (2013) Prevention of sudden unexpected death in epilepsy: a realistic goal? Epilepsia 54:23–28

    Article  PubMed  Google Scholar 

  7. Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A (2013) Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol 12:966–977

    Article  PubMed  Google Scholar 

  8. Nobili L, Proserpio P, Rubboli G, Montano N, Didato G, Tassinari CA (2011) Sudden unexpected death in epilepsy (SUDEP) and sleep. Sleep Med Rev 15:237–246

    Article  PubMed  Google Scholar 

  9. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

  10. McCraty R, Shaffer F (2015) Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 4:46–61

    Article  PubMed  PubMed Central  Google Scholar 

  11. Manor B, Costa MD, Hu K, Newton E, Starobinets O, Kang HG, Peng CK, Novak V, Lipsitz LA (2010) Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol 109:1786–1791

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hu W, Jin X, Zhang P, Yu Q, Yin G, Lu Y, Xiao H, Chen Y, Zhang D (2016) Deceleration and acceleration capacities of heart rate associated with heart failure with high discriminating performance. Sci Rep 6:23617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bauer A, Kantelhardt JW, Bunde A, Barthel P, Schneider R, Malik M, Schmidt G (2006) Phase-rectified signal averaging detects quasi-periodicities in non-stationary data. Physica A Stat Mech Appl 364:423–434

    Article  Google Scholar 

  14. Bauer A, Kantelhardt JW, Barthel P, Schneider R, Mäkikallio T, Ulm K, Hnatkova K, Schömig A, Huikuri H, Bunde A, Malik M, Schmidt G (2006) Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367:1674–1681

    Article  PubMed  Google Scholar 

  15. Warwick PM (1988) Prediction of energy expenditure: simplified FAO/WHO/UNU factorial method vs continuous respirometry and habitual energy intake. Am J Clin Nutr 48:1188–1196

    Article  CAS  PubMed  Google Scholar 

  16. Fujiwara K, Miyajima M, Yamakawa T, Abe E, Suzuki Y, Sawada Y, Kano M, Maehara T, Ohta K, Sasai-Sakuma T, Sasano T, Matsuura M, Matsushima E (2016) Epileptic seizure prediction based on multivariate statistical process control of heart rate variability features. IEEE Trans Biomed Eng 63:1321–1332

    Article  PubMed  Google Scholar 

  17. Myers KA, Bello-Espinosa LE, Symonds JD, Zuberi SM, Clegg R, Sadleir L, Buchhalter J, Scheffer IE (2018) Heart rate variability in epilepsy: a potential biomarker of sudden unexpected death in epilepsy risk using a simple threshold. Epilepsia 59:1372–1380

    Article  PubMed  Google Scholar 

  18. Nakagawa M, Iwao T, Ishida S, Yonemochi H, Fujino T, Saikawa T, Ito M (1998) Circadian rhythm of the signal averaged electrocardiogram and its relation to heart rate variability in healthy subjects. Heart 79:493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nelson W, Tong YL, Lee JK, Halberg F (1979) Methods for cosinor-rhythmometry. Chronobiologia 6:305–323

    CAS  PubMed  Google Scholar 

  20. Pencina MJ, D’Agostino RBS, D’Agostino RBJ, Vasan RS (2008) Evaluating the added predictive ability of a new marker:from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172

    Article  PubMed  Google Scholar 

  21. Pickering JW, Endre ZH (2012) New metrics for assessing diagnostic potential of candidate biomarkers. Clin J Am Soc Nephrol 7:1355–1364

    Article  PubMed  Google Scholar 

  22. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW (2010) Assessing the performance of prediction models a framework for traditional and novel measures. Epidemiology 21:128–138

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shaffer F, Mccraty R, Zerr CL (2014) A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol 5:1040

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pagani M, Lombardi F, Guzzetti S, Sandrone G, Rimoldi O, Malfatto G, Cerutti S, Malliani A (1984) Power spectral density of heart rate variability as an index of symptho-vagal interactions in normal and hypertensive subjects. J Hypertens Suppl 2:383–385

    Google Scholar 

  25. Bas R, Vallverdú M, Valencia JF, Voss A, de Luna AB, Caminal P (2015) Evaluation of acceleration and deceleration cardiac processes using phase-rectified signal averaging in healthy and idiopathic dilated cardiomyopathy subjects. Med Eng Phys 37:195–202

    Article  PubMed  Google Scholar 

  26. Tagliaferri S, Fanelli A, Esposito G, Esposito FG, Magenes G, Signorini MG, Campanile M, Martinelli P (2015) Evaluation of the acceleration and deceleration phase-rectified slope to detect and improve IUGR clinical management. Comput Math Methods Med 2015:1–9

    Article  Google Scholar 

  27. Graatsma EM, Mulder EJ, Vasak B, Lobmaier SM, Pildner von Steinburg S, Schneider KT, Schmidt G, Visser GH (2012) Average acceleration and deceleration capacity of fetal heart rate in normal pregnancy and in pregnancies complicated by fetal growth restriction. J Matern Fetal Neonatal Med 25:2517–2522

    Article  CAS  PubMed  Google Scholar 

  28. Nasari Junior O, Benchimol-Barbosa PR, Pedrosa RC, Nadal J (2015) Assessment of autonomic function by phase rectification of RR interval histogram analysis in Chagas disease. Arq Bras Cardiol 104:450–455

    PubMed Central  Google Scholar 

  29. Xu YH, Wang XD, Yang JJ, Zhou L, Pan YC (2016) Changes of deceleration and acceleration capacity of heart rate in patients with acute hemispheric ischemic stroke. Clin Interv Aging 11:293–298

    Article  PubMed  PubMed Central  Google Scholar 

  30. Buzea CA, Dan GA, Dan AR, Delcea C, Balea MI, Gologanu D, Popescu RA, Dobranici M (2017) Deceleration and acceleration capacities in risk stratification for arrhythmias in patients with chronic obstructive pulmonary disease. Am J Ther 24:e44

    Article  PubMed  Google Scholar 

  31. Lotufo PA, Valiengo L, Benseñor IM, Brunoni AR (2012) A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs. Epilepsia 53:272–282

    Article  PubMed  Google Scholar 

  32. Tomson T, Ericson M, Ihrman C, Lindblad LE (1998) Heart rate variability in patients with epilepsy. Epilepsy Res 30:77–83

    Article  CAS  PubMed  Google Scholar 

  33. El-Sayed HL, Kotby AA, Tomoum HY, El-Hadidi ES, El Behery SE, El-Ganzory AM (2007) Non-invasive assessment of cardioregulatory autonomic functions in children with epilepsy. Acta Neurol Scand 115:377–384

    Article  CAS  PubMed  Google Scholar 

  34. Shobha N, Satishchandra P, Sathyaprabha TN, Udupa K (2007) A study of interictal cardiac autonomic functions in patients with refractory complex partial epilepsy secondary to medial lobe pathology: before and after surgery. Neurol Asia 12:69–70

    Google Scholar 

  35. Massetani R, Strata G, Galli R, Gori S, Gneri C, Limbruno U, Di Santo D, Mariani M, Murri L (1997) Alteration of cardiac function in patients with temporal lobe epilepsy: different roles of EEG-ECG monitoring and spectral analysis of RR variability. Epilepsia 38:363–369

    Article  CAS  PubMed  Google Scholar 

  36. Ansakorpi H, Korpelainen JT, Suominen K, Tolonen U, Myllylä VV, Isojärvi JI (1998) Interictal cardiovascular autonomic responses in patients with epilepsy. Epilepsia 39:420–426

    Article  PubMed  Google Scholar 

  37. Ansakorpi H, Korpelainen JT, Huikuri HV, Tolonen U, Myllylä VV, Isojärvi JI (2002) Heart rate dynamics in refractory and well controlled temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 72:26–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ronkainen E, Ansakorpi H, Huikuri HV, Myllylä VV, Isojärvi JI, Korpelainen JT (2005) Suppressed circadian heart rate dynamics in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 76:1382–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dutsch M, Hilz MJ, Devinsky O (2006) Impaired baroreflex function in temporal lobe epilepsy. J Neurol 253:1300–1308

    Article  PubMed  Google Scholar 

  40. Evrengül H, Tanriverdi H, Dursunoglu D, Kaftan A, Kuru O, Unlu U, Kilic M (2005) Time and frequency domain analyses of heart rate variability in patients with epilepsy. Epilepsy Res 63:131–139

    Article  PubMed  Google Scholar 

  41. Harnod T, Yang CC, Hsin YL, Shieh KR, Wang PJ, Kuo TB (2008) Heart rate variability in children with refractory generalized epilepsy. Seizure 17:297–301

    Article  PubMed  Google Scholar 

  42. Pan Q, Zhou GZ, Wang RF, Yu YH, Li F, Fang LP, Yan J, Ning GM (2016) The degree of heart rate asymmetry is crucial for the validity of the deceleration and acceleration capacity indices of heart rate: a model-based study. Comput Biol Med 76:39–49

    Article  PubMed  Google Scholar 

  43. Hofstra WA, deWeerd AW (2009) The circadian rhythm and its interaction with human epilepsy: a review of literature. Sleep Med Rev 13:413–420

    Article  PubMed  Google Scholar 

  44. Persson H, Kumlien E, Ericson M, Tomson T (2007) Circadian variation in heart rate variability in localization-related epilepsy. Epilepsia 48:917–922

    Article  PubMed  Google Scholar 

  45. Sivakumar SS, Namath AG, Tuxhorn IE, Lewis SJ, Galán RF (2016) Decreased heart rate and enhanced sinus arrhythmia during interictal sleep demonstrate autonomic imbalance in generalized epilepsy. J Neurophysiol 115:1988–1999

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lin Z, Si Q, Xiaoyi Z (2017) Obstructive sleep apnoea in patients with epilepsy: a meta-analysis. Sleep Breath 21:263–270

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Professor Meng Fangang and Zhang Jianguo in Beijing Tian Tan Hospital for their valuable work in diagnosing patients with drug-resistant epilepsy. We also thank Sanbo Brain Hospital Capital Medical University, TsingHua University YuQuan Hospital, Peking University First Hospital FengTai Hospital, Chinese PLA General Hospital, First Affiliated Hospital of PLA General Hospital and Navy General Hospital for their medical technological support.

Funding

This work was supported by the National Key Technology R&D Program funded by Ministry of Science and Technology, sponsored by the Chinese Government (2012BAI16B01, 2013BAI03B03, 2015BAI01B08, 2016YFC1305703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyun Liu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the Institutional Review Committee of Beijing Tiantan Hospital Capital Medical University (No. qx2014-010-02), and all subjects (or parents/guardians of subjects) provided written informed consent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, Z., Meng, F. et al. Deceleration and acceleration capacities of heart rate in patients with drug-resistant epilepsy. Clin Auton Res 29, 195–204 (2019). https://doi.org/10.1007/s10286-018-0569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-018-0569-0

Keywords

Navigation