Skip to main content

Advertisement

Log in

Electrochemical skin conductance: a systematic review

  • Review
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Currently available techniques for the evaluation of small fiber neuropathy and related sudomotor function remain suboptimal. Electrochemical skin conductance (ESC) has recently been introduced as a simple noninvasive and fast method for the detection of sudomotor dysfunction. The purpose of this review is to synthesize and appraise research using ESC measurements for sudomotor evaluation in adults.

Methods

Electronic databases including MEDLINE and Google Scholar were searched (up to March 13, 2017). The search strategy included the following terms: "electrochemical skin conductance,” “Sudoscan,” and “EZSCAN.” Evidence was graded according to defined quality indicators including (1) level of evidence; (2) use of established tests as reference tests (e.g., quantitative sudomotor axon test [QSART], sympathetic skin responses [SSR], thermoregulatory sweat test [TST], and skin biopsies to assess sudomotor and epidermal small fibers); (3) use of consecutive/non-consecutive subjects; and (4) study design (prospective/retrospective).

Results

A total of 24 studies met the inclusion criteria. These were classified into preclinical, normative, comparative/diagnostic, or interventional. ESC measurement properties, diagnostic accuracy, and similarities to and differences from established tests were examined.

Conclusions

ESC measurements expand the arsenal of available tests for the evaluation of sudomotor dysfunction. The advantages and disadvantages of ESC versus established tests for evaluating sudomotor/small fiber function reviewed herein should be used as evidence to inform future guidelines on the assessment of sudomotor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hovaguimian A, Gibbons CH (2011) Diagnosis and treatment of pain in small-fiber neuropathy. Curr Pain Headache Rep 15:193–200. doi:10.1007/s11916-011-0181-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. England JD, Gronseth GS, Franklin G et al (2009) Practice Parameter: evaluation of distal symmetric polyneuropathy: role of autonomic testing, nerve biopsy, and skin biopsy (an evidence-based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology 72:177–184. doi:10.1212/01.wnl.0000336345.70511.0f

    Article  CAS  PubMed  Google Scholar 

  3. Lauria G, Hsieh ST, Johansson O et al (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 17(903–912):e44–e49. doi:10.1111/j.1468-1331.2010.03023.x

    Article  Google Scholar 

  4. Peters MJH, Bakkers M, Merkies ISJ et al (2013) Incidence and prevalence of small-fiber neuropathy: a survey in the Netherlands. Neurology 81:1356–1360. doi:10.1212/WNL.0b013e3182a8236e

    Article  PubMed  Google Scholar 

  5. Dimitropoulos G, Tahrani AA, Stevens MJ (2014) Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes 5:17–39. doi:10.4239/wjd.v5.i1.17

    Article  PubMed  PubMed Central  Google Scholar 

  6. Devigili G, Tugnoli V, Penza P et al (2008) The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain J Neurol 131:1912–1925. doi:10.1093/brain/awn093

    Article  Google Scholar 

  7. 14 Autonomic Testing Policy v001.pdf. https://www.aan.com/uploadedFiles/Website_Library_Assets/Documents/3.Practice_Management/1.Reimbursement/1.Billing_and_Coding/5.Coverage_Policies/14%20Autonomic%20Testing%20Policy%20v001.pdf Accessed 3/18/2017

  8. Gibbons CH, Illigens BMW, Wang N, Freeman R (2009) Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology 72:1479–1486. doi:10.1212/WNL.0b013e3181a2e8b8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ayoub H, Calvet JH, Lair V et al (2012) Electrochemical basis for EZSCAN/SUDOSCAN: a quick, simple, and non-invasive method to evaluate sudomotor dysfunctions. In: Chun JH (ed) Developments in electrochemistry. ISBN 978-953-51-0851-1. https://www.intechopen.com/books/developments-in-electrochemistry/electrochemical-basis-for-ezscansudoscan-a-quick-simple-and-non-invasive-method-to-evaluate-sudomot

  10. Ayoub H, Lair V, Griveau S et al (2012) Electrochemical characterization of stainless steel as a new electrode material in a medical device for the diagnosis of sudomotor dysfunction. Electroanalysis 24:1324–1333. doi:10.1002/elan.201200058

    Article  CAS  Google Scholar 

  11. Vinik AI, Nevoret M-L, Casellini C (2015) The new age of sudomotor function testing: a sensitive and specific biomarker for diagnosis, estimation of severity, monitoring progression, and regression in response to intervention. Front Endocrinol 6:94. doi:10.3389/fendo.2015.00094

    Article  Google Scholar 

  12. Hubert D, Brunswick P, Calvet J-H et al (2011) Abnormal electrochemical skin conductance in cystic fibrosis. J Cyst Fibros Off J Eur Cyst Fibros Soc 10:15–20. doi:10.1016/j.jcf.2010.09.002

    Article  Google Scholar 

  13. Shibasaki M, Crandall CG (2010) Mechanisms and controllers of eccrine sweating in humans. Front Biosci 2:685–696

    Google Scholar 

  14. García Villar C (2011) Evidence-based radiology for diagnostic imaging: what it is and how to practice it. Radiologia 53:326–334. doi:10.1016/j.rx.2011.02.009

    Article  PubMed  Google Scholar 

  15. Shamseer L, Moher D, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349:g7647

    Article  Google Scholar 

  16. Leboulanger B, Guy RH, Delgado-Charro MB (2004) Reverse iontophoresis for non-invasive transdermal monitoring. Physiol Meas 25:R35–R50

    Article  PubMed  Google Scholar 

  17. Chizmadzhev YA, Indenbom AV, Kuzmin PI et al (1998) Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophys J 74:843–856. doi:10.1016/S0006-3495(98)74008-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brunswick P, Mayaudon H, Albin V et al (2007) Use of Ni electrodes chronoamperometry for improved diagnostics of diabetes and cardiac diseases. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2007:4544–4547. doi:10.1109/IEMBS.2007.4353350

    Article  CAS  Google Scholar 

  19. Vinik AI, Smith AG, Singleton JR et al (2016) Normative values for electrochemical skin conductances and impact of ethnicity on quantitative assessment of sudomotor function. Diabetes Technol Ther 18:391–398. doi:10.1089/dia.2015.0396

    Article  PubMed  Google Scholar 

  20. Hubert D, Brunswick P, Calvet J-H et al (2011) Abnormal electrochemical skin conductance in cystic fibrosis. J Cyst Fibros Off J Eur Cyst Fibros Soc 10:15–20. doi:10.1016/j.jcf.2010.09.002

    Article  Google Scholar 

  21. Zhu L, Zhao X, Zeng P et al (2016) Study on autonomic dysfunction and metabolic syndrome in Chinese patients. J Diabetes Investig 7:901–907. doi:10.1111/jdi.12524

    Article  PubMed  PubMed Central  Google Scholar 

  22. Freedman BI, Bowden DW, Smith SC et al (2014) Relationships between electrochemical skin conductance and kidney disease in type 2 diabetes. J Diabetes Complic 28:56–60. doi:10.1016/j.jdiacomp.2013.09.006

    Article  Google Scholar 

  23. Freedman BI, Smith SC, Bagwell BM et al (2015) Electrochemical skin conductance in diabetic kidney disease. Am J Nephrol 41:438–447. doi:10.1159/000437342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calvet JH, Dupin J, Winiecki H, Schwarz PEH (2013) Assessment of small fiber neuropathy through a quick, simple and non invasive method in a German diabetes outpatient clinic. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc 121:80–83. doi:10.1055/s-0032-1323777

    Article  CAS  Google Scholar 

  25. Luk AOY, Fu W-C, Li X et al (2015) The clinical utility of SUDOSCAN in chronic kidney disease in Chinese patients with type 2 diabetes. PLoS One 10:e0134981. doi:10.1371/journal.pone.0134981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chahal S, Vohra K, Syngle A (2017) Association of sudomotor function with peripheral artery disease in type 2 diabetes. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 38:151–156. doi:10.1007/s10072-016-2742-3

    Article  Google Scholar 

  27. Mayaudon H, Miloche P-O, Bauduceau B (2010) A new simple method for assessing sudomotor function: relevance in type 2 diabetes. Diabetes Metab 36:450–454. doi:10.1016/j.diabet.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  28. Ramachandran A, Moses A, Shetty S et al (2010) A new non-invasive technology to screen for dysglycaemia including diabetes. Diabetes Res Clin Pract 88:302–306. doi:10.1016/j.diabres.2010.01.023

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Chen L, Ding R et al (2015) A preliminary investigation of EZSCAN™ screening for impaired glucose tolerance and diabetes in a patient population. Exp Ther Med 9:1688–1694. doi:10.3892/etm.2015.2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Casellini CM, Parson HK, Richardson MS et al (2013) Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technol Ther 15:948–953. doi:10.1089/dia.2013.0129

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mao F, Liu S, Qiao X et al (2016) Sudoscan is an effective screening method for asymptomatic diabetic neuropathy in Chinese type 2 diabetes mellitus patients. J Diabetes Investig. doi:10.1111/jdi.12575

    Article  PubMed  PubMed Central  Google Scholar 

  32. Selvarajah D, Cash T, Davies J et al (2015) SUDOSCAN: a simple, rapid, and objective method with potential for screening for diabetic peripheral neuropathy. PLoS One 10:e0138224. doi:10.1371/journal.pone.0138224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. England JD, Gronseth GS, Franklin G et al (2005) Distal symmetric polyneuropathy: a definition for clinical research: report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 64:199–207. doi:10.1212/01.WNL.0000149522.32823.EA

    Article  CAS  PubMed  Google Scholar 

  34. Sheshah E, Madanat A, Al-Greesheh F et al (2015) Electrochemical skin conductance to detect sudomotor dysfunction, peripheral neuropathy and the risk of foot ulceration among Saudi patients with diabetes mellitus. J Diabetes Metab Disord 15:29. doi:10.1186/s40200-016-0252-8

    Article  PubMed  Google Scholar 

  35. Yajnik CS, Kantikar VV, Pande AJ, Deslypere JP (2012) Quick and simple evaluation of sudomotor function for screening of diabetic neuropathy. ISRN Endocrinol 2012:103714. doi:10.5402/2012/103714

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yajnik CS, Kantikar V, Pande A et al (2013) Screening of cardiovascular autonomic neuropathy in patients with diabetes using non-invasive quick and simple assessment of sudomotor function. Diabetes Metab 39:126–131. doi:10.1016/j.diabet.2012.09.004

    Article  CAS  Google Scholar 

  37. Ang L, Jaiswal M, Callaghan B et al (2017) Sudomotor dysfunction as a measure of small fiber neuropathy in type 1 diabetes. Auton Neurosci Basic Clin. doi:10.1016/j.autneu.2017.03.001

    Article  Google Scholar 

  38. Smith AG, Lessard M, Reyna S et al (2014) The diagnostic utility of Sudoscan for distal symmetric peripheral neuropathy. J Diabetes Complic 28:511–516. doi:10.1016/j.jdiacomp.2014.02.013

    Article  Google Scholar 

  39. Novak P (2016) Electrochemical skin conductance correlates with skin nerve fiber density. Front Aging Neurosci 8:199. doi:10.3389/fnagi.2016.00199

    Article  PubMed  PubMed Central  Google Scholar 

  40. Castro J, Miranda B, Castro I et al (2016) The diagnostic accuracy of Sudoscan in transthyretin familial amyloid polyneuropathy. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 127:2222–2227. doi:10.1016/j.clinph.2016.02.013

    Article  Google Scholar 

  41. Denier C, Ducot B, Husson H et al (2007) A brief compound test for assessment of autonomic and sensory-motor dysfunction in familial amyloid polyneuropathy. J Neurol 254:1684–1688. doi:10.1007/s00415-007-0617-5

    Article  CAS  PubMed  Google Scholar 

  42. Syngle A, Verma I, Krishan P et al (2015) Disease-modifying anti-rheumatic drugs improve autonomic neuropathy in arthritis: DIANA study. Clin Rheumatol 34:1233–1241. doi:10.1007/s10067-014-2716-x

    Article  PubMed  Google Scholar 

  43. Casellini CM, Parson HK, Hodges K et al (2016) Bariatric surgery restores cardiac and sudomotor autonomic C-Fiber dysfunction towards normal in obese subjects with type 2 diabetes. PLoS One 11:e0154211. doi:10.1371/journal.pone.0154211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith AG, Lessard M, Reyna S et al (2014) The diagnostic utility of Sudoscan for distal symmetric peripheral neuropathy. J Diabetes Complic 28:511–516. doi:10.1016/j.jdiacomp.2014.02.013

    Article  Google Scholar 

  45. Casellini CM, Parson HK, Richardson MS et al (2013) Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technol Ther 15:948–953. doi:10.1089/dia.2013.0129

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sato K, Ohtsuyama M, Samman G (1991) Eccrine sweat gland disorders. J Am Acad Dermatol 24:1010–1014

    Article  CAS  PubMed  Google Scholar 

  47. Brunswick P, Bocquet N (2014) United States Patent: 8918170—Electrophysiological analysis system

  48. Vitale GI, Quatrale RP, Giles PJ, Birnbaum JE (1986) Electrical field stimulation of isolated primate sweat glands. Br J Dermatol 115:39–47

    Article  CAS  PubMed  Google Scholar 

  49. Sommer P, Kluschina O, Schley M et al (2011) Electrically induced quantitative sudomotor axon reflex test in human volunteers. Auton Neurosci Basic Clin 159:111–116. doi:10.1016/j.autneu.2010.09.004

    Article  Google Scholar 

  50. Brinton M, Chung JL, Kossler A et al (2016) Electronic enhancement of tear secretion. J Neural Eng 13:016006. doi:10.1088/1741-2560/13/1/016006

    Article  PubMed  Google Scholar 

  51. Zonana J (1993) Hypohidrotic (anhidrotic) ectodermal dysplasia: molecular genetic research and its clinical applications. Semin Dermatol 12:241–246

    CAS  PubMed  Google Scholar 

  52. Norcliffe-Kaufmann L, Katz SD, Axelrod F, Kaufmann H (2015) Norepinephrine deficiency with normal blood pressure control in congenital insensitivity to pain with anhidrosis. Ann Neurol 77:743–752. doi:10.1002/ana.24377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Low PA, Caskey PE, Tuck RR et al (1983) Quantitative sudomotor axon reflex test in normal and neuropathic subjects. Ann Neurol 14:573–580. doi:10.1002/ana.410140513

    Article  CAS  PubMed  Google Scholar 

  54. Wang N, Gibbons CH, Freeman R (2011) Novel immunohistochemical techniques using discrete signal amplification systems for human cutaneous peripheral nerve fiber imaging. J Histochem Cytochem 59:382–390. doi:10.1369/0022155410396931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Henderson LA, Stathis A, James C et al (2012) Real-time imaging of cortical areas involved in the generation of increases in skin sympathetic nerve activity when viewing emotionally charged images. NeuroImage 62:30–40. doi:10.1016/j.neuroimage.2012.04.049

    Article  PubMed  Google Scholar 

  56. Asahina M, Poudel A, Hirano S (2015) Sweating on the palm and sole: physiological and clinical relevance. Clin Auton Res Off J Clin Auton Res Soc 25:153–159. doi:10.1007/s10286-015-0282-1

    Article  Google Scholar 

  57. Claus D, Schondorf R (1999) Sympathetic skin response. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:277–282

    CAS  PubMed  Google Scholar 

  58. Vetrugno R, Liguori R, Cortelli P, Montagna P (2003) Sympathetic skin response: basic mechanisms and clinical applications. Clin Auton Res Off J Clin Auton Res Soc 13:256–270. doi:10.1007/s10286-003-0107-5

    Article  Google Scholar 

  59. Shimada H, Kihara M, Kosaka S et al (2001) Comparison of SSR and QSART in early diabetic neuropathy–the value of length-dependent pattern in QSART. Auton Neurosci Basic Clin 92:72–75. doi:10.1016/S1566-0702(01)00287-9

    Article  CAS  Google Scholar 

  60. Illigens BMW, Gibbons CH (2009) Sweat testing to evaluate autonomic function. Clin Auton Res Off J Clin Auton Res Soc 19:79–87. doi:10.1007/s10286-008-0506-8

    Article  Google Scholar 

  61. Lefaucheur J-P, Wahab A, Planté-Bordeneuve V et al (2015) Diagnosis of small fiber neuropathy: a comparative study of five neurophysiological tests. Neurophysiol Clin Clin Neurophysiol 45:445–455. doi:10.1016/j.neucli.2015.09.012

    Article  Google Scholar 

  62. Syngle A, Verma I, Krishan P et al (2015) Disease-modifying anti-rheumatic drugs improve autonomic neuropathy in arthritis: DIANA study. Clin Rheumatol 34:1233–1241. doi:10.1007/s10067-014-2716-x

    Article  PubMed  Google Scholar 

  63. Obici L, Kuks JB, Buades J et al (2016) Recommendations for presymptomatic genetic testing and management of individuals at risk for hereditary transthyretin amyloidosis. Curr Opin Neurol 29(Suppl 1):S27–S35. doi:10.1097/WCO.0000000000000290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Phillipe Brunswick, Impeto Medical, for clarification of principles for ESC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Novak.

Ethics declarations

Conflict of interest

The Sudoscan® device was donated to the author by Impeto Medical. Dr. Novak has received funding support from Impeto Medical.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, P. Electrochemical skin conductance: a systematic review. Clin Auton Res 29, 17–29 (2019). https://doi.org/10.1007/s10286-017-0467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-017-0467-x

Keywords

Navigation