Skip to main content

Advertisement

Log in

Cross-spectral analysis of cardiovascular variables in supine diabetic patients

  • RESEARCH ARTICLE
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Cardiovascular autonomic neuropathy in diabetes is associated with a high risk of mortality, which makes its early identification clinically important. An easy method for identification of subjects with autonomic dysfunction would be of clinical benefit.

We evaluated the autonomic function in 28 diabetic patients and 21 control subjects recording 12 min time series of heart period (RR) and systolic arterial pressure (SAP, Finapres) during supine rest and 60° head-up tilt. The power of the high (respiratory) and low (LF ~ 0.1 Hz) frequency oscillations was quantified by spectral analysis. The central frequency of the LF oscillations (LF_freq), phase shift, and the transfer function gain between RR interval and SAP fluctuations were provided by cross-spectral analysis, and measured at the point of maximal coherence.

In the supine position 15 patients (LF–) displayed atypical LF variability with the LF_freq being shifted towards lower frequencies (about 0.06 Hz). They also showed larger phase angle, lower values or even absence of coherence and smaller transfer function gain between RR and SAP fluctuations. 13 patients (LF+) and the controls showed the LF_freq around 0.1 Hz, higher coherence and transfer function gain values. The orthostatic maneuver induced the expected changes in the spectral parameters (increase in the LF components of both RR and SAP and decrease in the HF variability of RR) into the LF+ patients and all the control subjects and abnormal response in the other 15 LF-patients.

These findings indicate that diabetic subjects with uncharacteristic response to the orthostatic test present abnormal LF variability already in the supine position. Crossspectral parameters while supine may be used for the identification of these subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr AC-19:716–723

    Google Scholar 

  2. Bartoli F, Baselli G, Cerutti S (1985) AR identification and spectral estimate applied to the R-R interval measurements. Int J Bio-Medical Computing 16:201–215

    CAS  Google Scholar 

  3. Bernardi L, Leuzzi S, Radaelli A, Passino C, Johnston JA, Sleight P (1994) Low-frequency spontaneous fluctuations of R-R interval and blood pressure in conscious humans: a baroreceptor or central phenomenon? Clin Sci 87:649–654

    PubMed  CAS  Google Scholar 

  4. Cevese A,Grasso R, Poltronieri R, Schena F (1995) Vascular resistance and arterial pressure low-frequency oscillations in the anaesthetized dog. Am J Physiol 268:H7–H16

    PubMed  CAS  Google Scholar 

  5. Cevese A, Gulli G, Polati E,Gottin L, Grasso R (2001) The baroreflex and the oscillation of heart period at 0.1 Hz studied by α-blockade and crossspectral analysis in healthy humans. J Physiol (Lond) 531:235–244

    PubMed  CAS  Google Scholar 

  6. Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96:3224–3232

    PubMed  CAS  Google Scholar 

  7. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability. (Standards of measurement, physiological interpretation and clinical use.) Circulation 93:1043–1065

    Google Scholar 

  8. Ewing DJ, Clarke BF (1982) Diagnosis and management of diabetic autonomic neuropathy. Br Med J (Clin Res Ed) 285(6346):916–918

    Article  CAS  Google Scholar 

  9. Frattola A, Parati G, Gamba P, Paleari F, Mauri G, Di Rienzo M, Castiglioni P, Mancia G (1997) Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus. Diabetologia 40(12):1470–1475

    PubMed  CAS  Google Scholar 

  10. Gulli G, Cemin R, Pancera P, Menegatti G, Vassanelli C, Cevese A (2001) Evidence of parasympathetic impairment in patients with cardiac syndrome X. Cardiovasc Res 52(2):208–216

    PubMed  CAS  Google Scholar 

  11. Gulli G, Cooper VL, Claydon V, Hainsworth R (2003) Cross-spectral analysis of cardiovascular parameters whilst supine may identify subjects with poor orthostatic tolerance. Clin Sci (Lond) 105(1):119–126

    PubMed  Google Scholar 

  12. Gulli G, Wight VL, Hainsworth R, Cevese A (2001) Spectral and crossspectral autoregressive analysis of cardiovascular variables in subjects with different degrees of orthostatic tolerance. Clin Auton Res 11:19–27

    PubMed  CAS  Google Scholar 

  13. Jasson S, Medigue C, Maison-Blanche P, Montano N, Meyer L, Vermeiren C, Mansier P, Coumel P, Malliani A, Swynghedauw B (1997) Instant power spectrum analysis of heart rate variability during orthostatic tilt using a time-/frequency-domain method. Circulation 96(10):3521–3526

    PubMed  CAS  Google Scholar 

  14. Johnsen SJ, Andersen N (1978) On power estimation in maximum entropy spectral analysis. Geophysics 43:681–690

    Google Scholar 

  15. Kamath MV, Fallen EL, McKelvie R (1991) Effects of steady state exercise on the power spectrum of heart rate variability. Med Sci Sports Exerc 23:428–431

    PubMed  CAS  Google Scholar 

  16. Kay SM (1991) Modern spectral estimation: theory and application. Prentice-Hall Inc., Englewood Cliffs, New Jersey

    Google Scholar 

  17. Lambertz M, Langhorst P (1998) Simultaneous changes of rhythmic organization in brainstem neurons, respiration, cardiovascular system and EEG between 0.05 Hz and 0.5 Hz. J Autonom Nerv Syst 68:58–77

    CAS  Google Scholar 

  18. Laude D, Elghozi JL, Girard A, Bellard E, Bouhaddi M, Castiglioni P, Cerutti C, Cividjian A, Di Rienzo M, Fortrat JO, Janssen B, Karemaker JM, Leftheriotis G, Parati G, Persson PB, Porta A, Quintin L, Regnard J, Rudiger H, Stauss HM (2004) Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). Am J Physiol Regul Integr Comp Physiol 286(1):R226–R231

    PubMed  CAS  Google Scholar 

  19. Lishner M, Akselrod S, Mor Avi V, Oz O, Divon M, Ravid M (1987) Spectral analysis of heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy in diabetes mellitus. J Autonom Nerv Syst 19:119–125

    CAS  Google Scholar 

  20. Mancia G, Parati G, Castiglioni P, di Rienzo M (1999) Effect of sinoaortic denervation on frequency-domain estimates of baroreflex sensitivity in conscious cats. Am J Physiol 276(6 Pt 2):H1987–H1993

    PubMed  CAS  Google Scholar 

  21. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90(4):1826–1831

    PubMed  CAS  Google Scholar 

  22. O’Brien IA, McFadden JP, Corrall RJ (1991) The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Q J Med 79(290):495–502

    PubMed  Google Scholar 

  23. Polosa C (1984) Hemorrhage and blood pressure waves. In: Miyakawa K, Koepchen HP, Polosa C (eds) Mechanisms of blood pressure waves. Jap Sci Soc Press, Tokyo, pp 147–166

  24. Rathmann W, Ziegler D, Jahnke M, Haastert B, Gries FA (1993) Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabet Med 10(9):820–824

    Article  PubMed  CAS  Google Scholar 

  25. Sanya EO, Brown CM, Dutsch M, Zikeli U, Neundorfer B, Hilz MJ (2003) Impaired cardiovagal and vasomotor responses to baroreceptor stimulation in type II diabetes mellitus. Eur J Clin Invest 33(7):582–588

    PubMed  CAS  Google Scholar 

  26. Sleight P, Malliani A, Malik M, Eckberg DL (1998) Correspondence: Sympathovagal balance. Circulation 98:2640–2644

    PubMed  CAS  Google Scholar 

  27. Thomas PK (1997) Clinical features and investigation of diabetic somatic peripheral neuropathy. Clin Neurosci 4(6):341–345

    PubMed  CAS  Google Scholar 

  28. Weise F, Baltrusch K, Heydenreich F (1989) Effect of low-dose atropine on heart rate fluctuations during orthostatic load: a spectral analysis. J Autonom Nerv Syst 26:223–230

    CAS  Google Scholar 

  29. Ziegler D (2002) Diabetic autonomic neuropathy. Cardiac sympathetic “dysinnervation”, QT interval prolongation, and mortality. Clin Auton Res 12(5):349–352

    PubMed  Google Scholar 

  30. Ziegler D, Laude D, Akila F, Elghozi JL (2001) Time- and frequency-domain estimation of early diabetic cardiovascular autonomic neuropathy. Clin Auton Res 11(6):369–376

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Gulli MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulli, G., Fattor, B. & Marchesi, M. Cross-spectral analysis of cardiovascular variables in supine diabetic patients. Clin Auton Res 15, 92–98 (2005). https://doi.org/10.1007/s10286-005-0247-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-005-0247-x

Key words

Navigation