Boundary Restored Network for Subpleural Pulmonary Lesion Segmentation on Ultrasound Images at Local and Global Scales


To evaluate the application of machine learning for the detection of subpleural pulmonary lesions (SPLs) in ultrasound (US) scans, we propose a novel boundary-restored network (BRN) for automated SPL segmentation to avoid issues associated with manual SPL segmentation (subjectivity, manual segmentation errors, and high time consumption). In total, 1612 ultrasound slices from 255 patients in which SPLs were visually present were exported. The segmentation performance of the neural network based on the Dice similarity coefficient (DSC), Matthews correlation coefficient (MCC), Jaccard similarity metric (Jaccard), Average Symmetric Surface Distance (ASSD), and Maximum symmetric surface distance (MSSD) was assessed. Our dual-stage boundary-restored network (BRN) outperformed existing segmentation methods (U-Net and a fully convolutional network (FCN)) for the segmentation accuracy parameters including DSC (83.45 ± 16.60%), MCC (0.8330 ± 0.1626), Jaccard (0.7391 ± 0.1770), ASSD (5.68 ± 2.70 mm), and MSSD (15.61 ± 6.07 mm). It also outperformed the original BRN in terms of the DSC by almost 5%. Our results suggest that deep learning algorithms aid fully automated SPL segmentation in patients with SPLs. Further improvement of this technology might improve the specificity of lung cancer screening efforts and could lead to new applications of lung US imaging.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Gould MK, Fletcher J, Iannettoni MD, et al.: Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132:108s-130s, 2007

    Article  Google Scholar 

  2. 2.

    Bray F, Ferlay J, Soerjomataram I, et al.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394-424, 2018

    Article  Google Scholar 

  3. 3.

    Aston SJ: Pneumonia in the developing world: characteristic features and approach to management. Respirology 22:1276-1287, 2017

    Article  Google Scholar 

  4. 4.

    Agostinis P, Copetti R, Lapini L, et al.: Chest ultrasound findings in pulmonary tuberculosis. Trop Doct 47:320-328, 2017

    Article  Google Scholar 

  5. 5.

    Huang CT, Tsai YJ, Ho CC, Yu CJ: Atypical cells in pathology of endobronchial ultrasound-guided transbronchial biopsy of peripheral pulmonary lesions: incidence and clinical significance. Surg Endosc 33:1783-1788, 2019

    Article  Google Scholar 

  6. 6.

    Kumar S, Latte MV: Fully automated segmentation of lung parenchyma using break and repair strategy. J Intell Syst 28:275-289, 2019

    Article  Google Scholar 

  7. 7.

    Huang CC, Hung ST, Chang WC, Sheu CY: Benign features of infection-related tumor-like lesions of the lung: a retrospective imaging review study. J Med Imaging Radiat Oncol 61:481-488, 2017

    Article  Google Scholar 

  8. 8.

    Thawani R, McLane M, Beig N, et al.: Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 115:34-41, 2018

    Article  Google Scholar 

  9. 9.

    Jones BP, Tay ET, Elikashvili I, et al.: Feasibility and safety of substituting lung ultrasonography for chest radiography when diagnosing pneumonia in children: a randomized controlled trial. Chest 150:131-138, 2016

    Article  Google Scholar 

  10. 10.

    Pereda MA, Chavez MA, Hooper-Miele CC, et al.: Lung ultrasound for the diagnosis of pneumonia in children: a meta-analysis. Pediatrics 135:714-722, 2015

    Article  Google Scholar 

  11. 11.

    Sperandeo M, Rotondo A, Guglielmi G, et al.: Transthoracic ultrasound in the assessment of pleural and pulmonary diseases: use and limitations. Radiol Med 119:729-740, 2014

    Article  Google Scholar 

  12. 12.

    Mojoli F, Bouhemad B, Mongodi S, Lichtenstein D: Lung ultrasound for critically ill patients. Am J Respir Crit Care Med 199:701-714, 2019

    Article  Google Scholar 

  13. 13.

    Brattain LJ, Telfer BA, Dhyani M, et al.: Machine learning for medical ultrasound: status, methods, and future opportunities. Abdom Radiol (NY) 43:786-799, 2018

    Article  Google Scholar 

  14. 14.

    Gao Y, Liao S, Shen D: Prostate segmentation by sparse representation based classification. Med Phys 39:6372-6387, 2012

    Article  Google Scholar 

  15. 15.

    Li W, Liao S, Feng Q, et al.: Learning image context for segmentation of the prostate in CT-guided radiotherapy. Phys Med Biol 57:1283-1308, 2012

    Article  Google Scholar 

  16. 16.

    Mahapatra D, Buhmann JM: Prostate MRI segmentation using learned semantic knowledge and graph cuts. IEEE Trans Biomed Eng 61:756-764, 2014

    Article  Google Scholar 

  17. 17.

    Thanh DNH, Sergey D, Surya Prasath VB, Hai NH: Blood vessels segmentation method for retinal fundus images based on adaptive principal curvature and image derivative operators Int Arch Photogramm Remote Sens Spatial Inf Sci XLII-2/W12:211-218, 2019

    Article  Google Scholar 

  18. 18.

    Moschidis E, Graham J: Automatic differential segmentation of the prostate in 3-D MRI using Random Forest classification and graph-cuts optimization. Proc. 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI),pp.1727–1730, 2012

  19. 19.

    Li A, Li C, Wang X, et al.: Automated segmentation of prostate MR images using prior knowledge enhanced random walker. Proc. 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA),pp.1–7, 2013

  20. 20.

    Medeiros AG, Guimarães MT, Peixoto SA, et al.: A new fast morphological geodesic active contour method for lung CT image segmentation. Measurement 148:106687, 2019

    Article  Google Scholar 

  21. 21.

    Thanh DNH, Hien NN, Surya Prasath VB, et al.: Automatic initial boundary generation methods based on edge detectors for the level set function of the Chan–Vese segmentation model and applications in biomedical image processing. Proc. Frontiers in Intelligent Computing: Theory and Applications,pp.171–181, 2020

  22. 22.

    Yang W, Liu Y, Lin L, et al.: Lung field segmentation in chest radiographs from boundary maps by a structured edge detector. IEEE J Biomed Health Inform 22:842-851, 2017

    Article  Google Scholar 

  23. 23.

    Soliman A, Khalifa F, Elnakib A, et al.: Accurate lungs segmentation on CT chest images by adaptive appearance-guided shape modeling. IEEE Trans Med Imaging 36:263-276, 2016

    Article  Google Scholar 

  24. 24.

    Hu Q, Souza LFdF, Holanda GB, et al.: An effective approach for CT lung segmentation using mask region-based convolutional neural networks. Artif Intell Med:101792, 2020

  25. 25.

    Gerard SE, Herrmann J, Kaczka DW, et al.: Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species. Med Image Anal 60:101592, 2020

    Article  Google Scholar 

  26. 26.

    Souza JC, Diniz JOB, Ferreira JL, et al.: An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks. Comput Methods Programs Biomed 177:285-296, 2019

    Article  Google Scholar 

  27. 27.

    Chen W, Wei H, Peng S, et al.: HSN: hybrid segmentation network for small cell lung cancer segmentation. IEEE Access 7:75591-75603, 2019

    Article  Google Scholar 

  28. 28.

    Cary TW, Reamer CB, Sultan LR, et al.: Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound. Med Phys 41:022901, 2014

    Article  Google Scholar 

  29. 29.

    Noble JA: Ultrasound image segmentation and tissue characterization. Proc Inst Mech Eng H 224:307-316, 2010

    CAS  Article  Google Scholar 

  30. 30.

    Guo LH, Wang D, Qian YY, et al.: A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clin Hemorheol Microcirc 69:343-354, 2018

    Article  Google Scholar 

  31. 31.

    Yap MH, Pons G, Marti J, et al.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform 22:1218-1226, 2018

    Article  Google Scholar 

  32. 32.

    Jain PK, Gupta S, Bhavsar A, et al.: Localization of common carotid artery transverse section in B-mode ultrasound images using faster RCNN: a deep learning approach. Med Biol Eng Comput 58:471-482, 2020

    Article  Google Scholar 

  33. 33.

    Ghose S, Oliver A, Mitra J, et al.: A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images. Med Image Anal 17:587-600, 2013

    Article  Google Scholar 

  34. 34.

    Guan Q, Wang Y, Du J, et al.: Deep learning based classification of ultrasound images for thyroid nodules: a large scale of pilot study. Ann Transl Med 7:137, 2019

    Article  Google Scholar 

  35. 35.

    Gruetzemacher R, Gupta A, Paradice D: 3D deep learning for detecting pulmonary nodules in CT scans. J Am Med Inform Assoc 25:1301-1310, 2018

    Article  Google Scholar 

  36. 36.

    Kamal U, Rafi AM, Hoque R, Hasan M: Lung cancer tumor region segmentation using recurrent 3D-DenseUNet. arXiv preprint arXiv:181201951, 2018

  37. 37.

    Veronica BK: An effective neural network model for lung nodule detection in CT images with optimal fuzzy model. Multimedia Tools and Applications:1-21, 2020

  38. 38.

    Shelhamer E, Long J, Darrell T: Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39:640-651, 2017

    Article  Google Scholar 

  39. 39.

    Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention,pp.234-241, 2015

  40. 40.

    Li H, Zhao R, Wang X: Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification. arXiv preprint arXiv:14124526, 2014

  41. 41.

    Hou Q, Cheng M, Hu X, et al.: Deeply supervised salient object detection with short connections. IEEE Trans Pattern Anal Mach Intell 41:815-828, 2019

    Article  Google Scholar 

  42. 42.

    Akata Z, Perronnin F, Harchaoui Z, Schmid C: Good practice in large-scale learning for image classification. IEEE Trans Pattern Anal Mach Intell 36:507-520, 2014

    Article  Google Scholar 

  43. 43.

    Taha AA, Hanbury A: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29, 2015

    Article  Google Scholar 

  44. 44.

    Thanh DNH, Erkan U, Prasath VS, et al.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. Proc. 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE),pp.116–120, 2019

  45. 45.

    Thanh DNH, Prasath VBS, Hieu LM, Hien NN: Melanoma skin cancer detection method based on adaptive principal curvature, colour normalisation and feature extraction with the ABCD rule. J Digit Imaging:1-12, 2019

  46. 46.

    Jia Y, Shelhamer E, Donahue J, et al.: Caffe: convolutional architecture for fast feature embedding. Proc. Proceedings of the 22nd ACM International Conference on Multimedia,pp.675-678, 2014

  47. 47.

    Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556, 2014

  48. 48.

    Zhao H, Shi J, Qi X, et al.: Pyramid scene parsing network. Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),pp.6230-6239, 2017

  49. 49.

    Zhang P, Wang D, Lu H, et al.: Amulet: aggregating multi-level convolutional features for salient object detection. Proc. 2017 IEEE International Conference on Computer Vision (ICCV),pp.202-211, 2017

  50. 50.

    Yu YH, Liao CC, Hsu WH, et al.: Increased lung cancer risk among patients with pulmonary tuberculosis: a population cohort study. J Thorac Oncol 6:32-37, 2011

    Article  Google Scholar 

  51. 51.

    Dobler CC, Cheung K, Nguyen J, Martin A: Risk of tuberculosis in patients with solid cancers and haematological malignancies: a systematic review and meta-analysis. Eur Respir J 50, 2017

  52. 52.

    Iwasawa T, Iwao Y, Takemura T, et al.: Extraction of the subpleural lung region from computed tomography images to detect interstitial lung disease. Jpn J Radiol 35:681-688, 2017

    CAS  Article  Google Scholar 

  53. 53.

    Putman RK, Hatabu H, Araki T, et al.: Association between interstitial lung abnormalities and all-cause mortality. JAMA 315:672-681, 2016

    CAS  Article  Google Scholar 

  54. 54.

    Raoof S, Bondalapati P, Vydyula R, et al.: Cystic lung diseases: algorithmic approach. Chest 150:945-965, 2016

    Article  Google Scholar 

  55. 55.

    Fu Y, Zhang YY, Cui LG, et al.: Ultrasound-guided biopsy of pleural-based pulmonary lesions by injection of contrast-enhancing drugs. Front Pharmacol 10:960, 2019

    Article  Google Scholar 

Download references


This study received funding from 2018 Supporting Project of Medical Guidance (Chinese and Western Medicine) of Science and Technology Commission of Shanghai Municipality (18411966700), 2019 Technical Standard Project of Shanghai "Science and Technology Innovation Action Plan" of Science and Technology Commission of Shanghai Municipality (19DZ2203300), Clinical Research Foundation of ShangHai Pulmonary Hospital (fk1940), Shanghai Sailing Program (No. 19YF1439300 & 19YF1440000) , Medical-Engineering Funding of Shanghai Jiao Tong University (No. ZH2018QNA24&ZH2018QNA20),National Key R&D Program of China (No. 2016YFC0904800). The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information




All authors contributed to the planning of the work described. Y.Z., K.B., L.X. and M.S. conducted the data collection. Y.X., Z.N., G.D., and Y.W. analyzed and interpreted the results. All authors critically revised the content and approved the final manuscript.

Corresponding authors

Correspondence to Guoying Deng or Yin Wang.

Ethics declarations

Conflicts of Interest

The authors declare that there are no conflicts of interest related to this article. This research was not sponsored by any company. The authors have full control of the data.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, Y., Bi, K. et al. Boundary Restored Network for Subpleural Pulmonary Lesion Segmentation on Ultrasound Images at Local and Global Scales. J Digit Imaging (2020).

Download citation


  • Convolutional neural network (CNN)
  • Deep learning
  • Image segmentation
  • Subpleural pulmonary lesion (SPL) segmentation
  • Ultrasound image