Using 3D-Printed Mesh-Like Brain Cortex with Deep Structures for Planning Intracranial EEG Electrode Placement

Abstract

Surgical evaluation of medically refractory epilepsy frequently necessitates implantation of multiple intracranial electrodes for the identification of the seizure focus. Knowledge of the individual brain’s surface anatomy and deep structures is crucial for planning the electrode implantation. We present a novel method of 3D printing a brain that allows for the simulation of placement of all types of intracranial electrodes. We used a DICOM dataset of a T1-weighted 3D-FSPGR brain MRI from one subject. The segmentation tools of Materialise Mimics 21.0 were used to remove the osseous anatomy from brain parenchyma. Materialise 3-matic 13.0 was then utilized in order to transform the cortex of the segmented brain parenchyma into a mesh-like surface. Using 3-matic tools, the model was modified to incorporate deep brain structures and create an opening in the medial aspect. The final model was then 3D printed as a cerebral hemisphere with nylon material using selective laser sintering technology. The final model was light and durable and reflected accurate details of the surface anatomy and some deep structures. Additionally, standard surgical depth electrodes could be passed through the model to reach deep structures without damaging the model. This novel 3D-printed brain model provides a unique combination of visualizing both the surface anatomy and deep structures through the mesh-like surface while allowing repeated needle insertions. This relatively low-cost technique can be implemented for interdisciplinary preprocedural planning in patients requiring intracranial EEG monitoring and for any intervention that requires needle insertion into a solid organ with unique anatomy and internal targets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

3D:

Three-dimensional

CT:

Computed tomography

DICOM:

Digital Imaging and Communications in Medicine

FDM:

Fused deposition modeling

FSPGR:

Fast spoiled gradient echo

MJF:

Multi Jet Fusion

MRI:

Magnetic resonance imaging

PLA:

Polylactic acid

SLS:

Selective laser sintering

STL:

Standard tessellation language or stereolithography

CPT:

Current procedural terminology

References

  1. 1.

    Tack P, Victor J, Gemmel P, Annemans L: 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 15(1):115, 2016 Oct. https://doi.org/10.1186/s12938-016-0236-4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Poukens J, Haex J, Riediger D: The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg. 8(3):146–154, 2003

    Article  Google Scholar 

  3. 3.

    Wilde F, Cornelius CP, Schramm A. Computer-assisted mandibular reconstruction using a patient-specific reconstruction plate fabricated with computer-aided design and manufacturing techniques. Craniomaxillofac Trauma Reconstr. 2014 Jun;7(2):158-166. doi: https://doi.org/10.1055/s-0034-1371356. Epub 2014 Feb 25.

  4. 4.

    Erbano BO, Opolski AC, Olandoski M, Foggiatto JA, Kubrusly LF, Dietz UA, Zini C, Marinho MM, Leal AG, Ramina R: Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms. Acta Cir Bras. 28(11):756–761, 2013 Nov

    Article  Google Scholar 

  5. 5.

    Zein NN, Hanouneh IA, Bishop PD, Samaan M, Eghtesad B, Quintini C, Miller C, Yerian L, Klatte R.Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transpl. 2013 Dec;19(12):1304-1310. doi: https://doi.org/10.1002/lt.23729. Epub 2013 Oct 21.

  6. 6.

    Cimerman M, Kristan A. Preoperative planning in pelvic and acetabular surgery: the value of advanced computerised planning modules. Injury. 2007 Apr;38(4):442-449. Epub 2007 Apr 2.

  7. 7.

    Wu XB, Wang JQ, Zhao CP, Sun X, Shi Y, Zhang ZA, Li YN, Wang MY: Printed three-dimensional anatomic templates for virtual preoperative planning before reconstruction of old pelvic injuries: initial results. Chin Med J (Engl). 128(4):477–482, 2015 Feb 20. https://doi.org/10.4103/0366-6999.151088

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    New ACR-Sponsored CPT Codes Approved by the AMA. American College of Radiology. Published November 1, 2018. www.acr.org/Advocacy-and-Economics/Advocacy-News/Advocacy-News-Issues/In-the-November-2-2018-Issue/New-ACR-Sponsored-CPT-Codes-Approved-by-the-AMA. Accessed 15 May, 2019.

  9. 9.

    Lopes da Silva F: EEG and MEG: relevance to neuroscience. Neuron. 80(5):1112–1128, 2013 Dec 4. https://doi.org/10.1016/j.neuron.2013.10.017

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kaiboriboon K, Lüders HO, Hamaneh M, Turnbull J, Lhatoo SD. EEG source imaging in epilepsy--practicalities and pitfalls. Nat Rev Neurol. 2012 Sep;8(9):498-507. doi: https://doi.org/10.1038/nrneurol.2012.150. Epub 2012 Aug 7.

  11. 11.

    Shah AK, Mittal S: Invasive electroencephalography monitoring: indications and presurgical planning. Ann Indian Acad Neurol. 17(Suppl 1):S89–S94, 2014 Mar. https://doi.org/10.4103/0972-2327.128668.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Delev D, Send K, Malter M, Ormond DR, Parpaley Y, von Lehe M, Schramm J, Grote A. Role of subdural interhemispheric electrodes in presurgical evaluation of epilepsy patients. World Neurosurg. 2015;84(6):1719-25.e1. doi: https://doi.org/10.1016/j.wneu.2015.07.034. Epub 2015 Jul 22.

  13. 13.

    Jayakar P, Gotman J, Harvey AS, Palmini A, Tassi L, Schomer D, Dubeau F, Bartolomei F, Yu A, Kršek P, Velis D, Kahane P Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques. Epilepsia. 2016 Nov;57(11): 1735-1747. doi: https://doi.org/10.1111/epi.13515. Epub 2016 Sep 28.

  14. 14.

    Chepelev L, et al. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med. 2018 Nov;4(1): 11. doi: https://doi.org/10.1186/s41205-018-0030-y.

  15. 15.

    Ploch CC, Mansi CSSA, Jayamohan J, Kuhl E. Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg. 2016 Jun;90: 668-674. doi: https://doi.org/10.1016/j.wneu.2016.02.081. Epub 2016 Feb 24.

  16. 16.

    Salanova V. Deep brain stimulation for epilepsy. Epilepsy Behav. 2018 Nov;88S:21-24. doi: https://doi.org/10.1016/j.yebeh.2018.06.041. Epub 2018 Jul 17.

  17. 17.

    Hariz M: Deep brain stimulation: new techniques. Parkinsonism Relat Disord. 20(Suppl 1):S192–S196, 2014 Jan. https://doi.org/10.1016/S1353-8020(13)70045-2.

    Article  PubMed  Google Scholar 

  18. 18.

    Kwan P, Schachter SC, Brodie MJ: Drug-resistant epilepsy. N Engl J Med. 365(10):919–926, 2011 Sep 8. https://doi.org/10.1056/NEJMra1004418

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Hupalo M, Wojcik R, Jaskolski DJ. Intracranial video-EEG monitoring in presurgical evaluation of patients with refractory epilepsy. Neurol Neurochir Pol. 2017 May - Jun;51(3):201-207. doi: https://doi.org/10.1016/j.pjnns.2017.02.002. Epub 2017 Mar 2.

  20. 20.

    Youngblood MW, Han X, Farooque P, Jhun S, Bai X, Yoo JY, Lee HW, Blumenfeld H. Intracranial EEG surface renderings: new insights into normal and abnormal brain function. Neuroscientist. 2013 Jun;19(3):238-247. doi: https://doi.org/10.1177/1073858412447876. Epub 2012 May 31.

  21. 21.

    Park GY, Kim T, Park J, Lee EM, Ryu HU, Kim SI, Kim IY, Kang JK, Jang DP, Husain M4. Neural correlates of spatial and nonspatial attention determined using intracranial electroencephalographic signals in humans. Hum Brain Mapp. 2016 Aug;37(8):3041-3054. doi: https://doi.org/10.1002/hbm.23225. Epub 2016 Apr 29.

  22. 22.

    Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage. 2012 Jun;61(2):371-385. doi: https://doi.org/10.1016/j.neuroimage.2011.12.039. Epub 2011 Dec 28.

  23. 23.

    Jacobs J, Staba R, Asano E, Otsubo H, Wu JY, Zijlmans M, Mohamed I, Kahane P, Dubeau F, Navarro V, Gotman J. High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol. 2012 Sep;98(3):302-315. doi: https://doi.org/10.1016/j.pneurobio.2012.03.001. Epub 2012 Apr 3.

  24. 24.

    Lee, Hyang Woon, et al. Seizure localization using three-dimensional surface projections of intracranial EEG power. Neuroimage. 2013 Dec;83: 616-626. Epub 2013 Jul 11.

  25. 25.

    Perica ER, Sun Z: A systematic review of three-dimensional printing in liver disease. J Digit Imaging. 31(5):692–701, 2018 Oct. https://doi.org/10.1007/s10278-018-0067-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bernhard JC, Isotani S, Matsugasumi T, Duddalwar V, Hung AJ, Suer E, Baco E, Satkunasivam R, Djaladat H, Metcalfe C, Hu B, Wong K, Park D, Nguyen M, Hwang D, Bazargani ST, de Castro Abreu AL, Aron M, Ukimura O, Gill IS Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol. 2016 Mar;34(3): 337-345. doi: https://doi.org/10.1007/s00345-015-1632-2. Epub 2015 Jul 11.

  27. 27.

    Kong X, Nie L, Zhang H, Wang Z, Ye Q, Tang L, Li J, Huang W: Do 3D printing models improve anatomical teaching about hepatic segments to medical students? A randomized controlled study. World J Surg. 40(8):1969–1976, 2016 Aug. https://doi.org/10.1007/s00268-016-3541-y

    Article  PubMed  Google Scholar 

  28. 28.

    Polyamide (MJF). i.materialise, Materialise NV, 2019, i.materialise.com/en/3d-printing-materials/polyamide-mjf. Accessed 24 Feb, 2019.

  29. 29.

    Javan R, Zeman MN: A prototype educational model for hepatobiliary interventions: unveiling the role of graphic designers in medical 3D printing. J Digit Imaging. 31(1):133–143, 2018 Feb. https://doi.org/10.1007/s10278-017-0012-4

    Article  PubMed  Google Scholar 

  30. 30.

    Javan R, Bansal M, Tangestanipoor A: A prototype hybrid gypsum-based 3-dimensional printed training model for computed tomography-guided spinal pain management. J Comput Assist Tomogr. 40(4):626–631, 2016 Jul-Aug. https://doi.org/10.1097/RCT.0000000000000415

    Article  PubMed  Google Scholar 

Download references

Funding

The 3D model was purchased through dedicated departmental funds for 3D printing purposes in clinical, research, and educational endeavors at George Washington University Hospital, Department of Radiology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramin Javan.

Ethics declarations

Conflict of Interest

Maureen Schickel is an employee of Materialise. No conflict of interest for other co-authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Javan, R., Schickel, M., Zhao, Y. et al. Using 3D-Printed Mesh-Like Brain Cortex with Deep Structures for Planning Intracranial EEG Electrode Placement. J Digit Imaging 33, 324–333 (2020). https://doi.org/10.1007/s10278-019-00275-3

Download citation

Keywords

  • 3D printing
  • Deep electrode
  • Brain surface anatomy
  • Epilepsy
  • EEG