Skip to main content
Log in

Anthropometer3D: Automatic Multi-Slice Segmentation Software for the Measurement of Anthropometric Parameters from CT of PET/CT

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Anthropometric parameters like muscle body mass (MBM), fat body mass (FBM), lean body mass (LBM), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) are used in oncology. Our aim was to develop and evaluate the software Anthropometer3D measuring these anthropometric parameters on the CT of PET/CT. This software performs a multi-atlas segmentation of CT of PET/CT with extrapolation coefficients for the body parts beyond the usual acquisition range (from the ischia to the eyes). The multi-atlas database is composed of 30 truncated CTs manually segmented to isolate three types of voxels (muscle, fat, and visceral fat). To evaluate Anthropomer3D, a leave-one-out cross-validation was performed to measure MBM, FBM, LBM, VAT, and SAT. The reference standard was based on the manual segmentation of the corresponding whole-body CT. A manual segmentation of one CT slice at level L3 was also used. Correlations were analyzed using Dice coefficient, intra-class coefficient correlation (ICC), and Bland–Altman plot. The population was heterogeneous (sex ratio 1:1; mean age 57 years old [min 23; max 74]; mean BMI 27 kg/m2 [min 18; max 40]). Dice coefficients between reference standard and Anthropometer3D were excellent (mean+/-SD): muscle 0.95 ± 0.02, fat 1.00 ± 0.01, and visceral fat 0.97 ± 0.02. The ICC was almost perfect (minimal value of 95% CI of 0.97). All Bland–Altman plot values (mean difference, 95% CI and slopes) were better for Anthropometer3D compared to L3 level segmentation. Anthropometer3D allows multiple anthropometric measurements based on an automatic multi-slice segmentation. It is more precise than estimates using L3 level segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Figure 4

Similar content being viewed by others

References

  1. Prado CMM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L et al.: Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol 9:629–635, 2008

    Article  PubMed  Google Scholar 

  2. Bye A, Sjøblom B, Wentzel-Larsen T, Grønberg BH, Baracos VE, Hjermstad MJ, Aass N, Bremnes RM, Fløtten Ø, Jordhøy M: Muscle mass and association to quality of life in non-small cell lung cancer patients. J Cachexia Sarcopenia Muscle 8:759–767, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lieffers JR, Bathe OF, Fassbender K, Winget M, Baracos VE: Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br J Cancer 107:931–936, 2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blauwhoff-Buskermolen S, Versteeg KS: de van der Schueren MAE, den braver NR, Berkhof J, Langius JAE, et al. loss of muscle mass during chemotherapy is predictive for poor survival of patients with metastatic colorectal Cancer. J Clin Oncol 34:1339–1344, 2016

    Article  CAS  PubMed  Google Scholar 

  5. Shen W, Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, Imielinska C, Ross R, Heymsfield SB: Adipose tissue quantification by imaging methods: A proposed classification. Obes Res 11:5–16, 2003

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K: Body fatness and Cancer — Viewpoint of the IARC working group. N Engl J Med 375:794–798, 2016

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gouérant S, Leheurteur M, Chaker M, Modzelewski R, Rigal O, Veyret C et al.: A higher body mass index and fat mass are factors predictive of docetaxel dose intensity. Anticancer Res 33:5655–5662, 2013

    PubMed  Google Scholar 

  8. Camus V, Lanic H, Kraut J, Modzelewski R, Clatot F, Picquenot JM, Contentin N, Lenain P, Groza L, Lemasle E, Fronville C, Cardinael N, Fontoura ML, Chamseddine A, Brehar O, Stamatoullas A, Leprêtre S, Tilly H, Jardin F: Prognostic impact of fat tissue loss and cachexia assessed by computed tomography scan in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Eur J Haematol 93:9–18, 2014

    Article  CAS  PubMed  Google Scholar 

  9. Iwase T, Sangai T, Nagashima T, Sakakibara M, Sakakibara J, Hayama S, Ishigami E, Masuda T, Miyazaki M: Impact of body fat distribution on neoadjuvant chemotherapy outcomes in advanced breast cancer patients. Cancer Med 5:41–48, 2016

    Article  PubMed  Google Scholar 

  10. Gu W, Zhu Y, Wang H, Zhang H, Shi G, Liu X, Ye D: Prognostic value of components of body composition in patients treated with targeted therapy for advanced renal cell carcinoma: A retrospective case series. PLoS One 10:e0118022, 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Slaughter KN, Thai T, Penaroza S, Benbrook DM, Thavathiru E, Ding K, Nelson T, McMeekin DS, Moore KN: Measurements of adiposity as clinical biomarkers for first-line bevacizumab-based chemotherapy in epithelial ovarian cancer. Gynecol Oncol 133:11–15, 2014

    Article  CAS  PubMed  Google Scholar 

  12. Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K, Maggi S, Dennison E, al-Daghri NM, Allepaerts S, Bauer J, Bautmans I, Brandi ML, Bruyère O, Cederholm T, Cerreta F, Cherubini A, Cooper C, Cruz-Jentoft A, McCloskey E, Dawson-Hughes B, Kaufman JM, Laslop A, Petermans J, Reginster JY, Rizzoli R, Robinson S, Rolland Y, Rueda R, Vellas B, Kanis JA: Pitfalls in the measurement of muscle mass: A need for a reference standard. J Cachexia Sarcopenia Muscle 9:269–278, 2018

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chowdhury B, Sjöström L, Alpsten M, Kostanty J, Kvist H: Löfgren R. A multicompartment body composition technique based on computerized tomography. Int J Obes Relat Metab Disord 18:219–234, 1994

    CAS  PubMed  Google Scholar 

  14. Malnick SDH, Melzer E: It is not ethical to perform a CT scan purely for determining visceral fat. J Clin Gastroenterol 50:352, 2016

    Article  PubMed  Google Scholar 

  15. Mourtzakis M, Prado CMM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE: A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 33:997–1006, 2008

  16. Decazes P, Métivier D, Rouquette A, Talbot JN, Kerrou K: Method to improve the semiquantification of 18F-FDG uptake: Reliability of the estimated lean body mass using the conventional, low-dose CT from PET/CT. J Nucl Med 57:753–758, 2016

  17. Decazes P, Rouquette A, Chetrit A, Vera P, Gardin I: Automatic measurement of the total visceral adipose tissue from computed tomography images by using a multi-atlas segmentation method. J Comput Assist Tomogr 42:139-145, 2018

  18. Schweitzer L, Geisler C, Pourhassan M, Braun W, Glüer C-C, Bosy-Westphal A, Müller MJ: What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am J Clin Nutr 102:58–65, 2015

    Article  CAS  PubMed  Google Scholar 

  19. Shen W, Chen J, Gantz M, Velasquez G, Punyanitya M, Heymsfield SB: A single mri slice does not accurately predict visceral and subcutaneous adipose tissue changes during weight loss. Obesity 20:2458–2463, 2012

    Article  PubMed  Google Scholar 

  20. Thomas EL, Bell JD: Influence of undersampling on magnetic resonance imaging measurements of intra-abdominal adipose tissue. Int J Obes Relat Metab Disord 27:211–218, 2003

  21. Schaudinn A, Linder N, Garnov N, Kerlikowsky F, Blüher M, Dietrich A, Schütz T, Karlas T, Kahn T, Busse H: Predictive accuracy of single- and multi-slice MRI for the estimation of total visceral adipose tissue in overweight to severely obese patients. NMR Biomed 28:583–590, 2015

    Article  PubMed  Google Scholar 

  22. Hu HH, Chen J, Shen W: Segmentation and quantification of adipose tissue by magnetic resonance imaging. MAGMA 29:259–276, 2016

    Article  CAS  PubMed  Google Scholar 

  23. Iglesias JE, Sabuncu MR: Multi-atlas segmentation of biomedical images: A survey. Med Image Anal 24:205–219, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kullberg J, Johansson L, Ahlström H, Courivaud F, Koken P, Eggers H, Börnert P: Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: A feasibility study. J Magn Reson Imaging 30:185–193, 2009

    Article  PubMed  Google Scholar 

  25. Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, Dahlqvist Leinhard O: Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI. J Magn Reson Imaging 41:1558–1569, 2015

  26. Anthropometer 3D | Automatic 3D anthropometry from medical images [Internet]. [accessed 2018 May 28]. Available from: https://www.anthropometer3d.org/

  27. Taha AA, Hanbury A: Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med Imaging 15:29, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  28. J Mendez, Keys A. Density and composition of mammalian muscle. Metabolism. 9:184-188, 1960

  29. Seg3D [Internet]. [accessed 2018 Feb 5]. Available from: http://www.sci.utah.edu/cibc-software/seg3d.html

  30. Lee J, Koh D, Ong CN: Statistical evaluation of agreement between two methods for measuring a quantitative variable. Comput Biol Med 19:61–70, 1989

    Article  CAS  PubMed  Google Scholar 

  31. Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310, 1986

    Article  CAS  PubMed  Google Scholar 

  32. Dice LR: Measures of the amount of ecologic association between species. Ecology 26:297–302, 1945

    Article  Google Scholar 

  33. Team RDC: R: A language and environment for statistical computing [Internet] [accessed 2018 May 28]. Vienna: R Foundation for Statistical Computing, 2008, Available from: http://www.R-project.org

  34. Jacquelin-Ravel N, Pichard C: Clinical nutrition, body composition and oncology: A critical literature review of the synergies. Crit Rev Oncol Hematol 84:37–46, 2012

    Article  PubMed  Google Scholar 

  35. Lee H, Troschel FM, Tajmir S, Fuchs G, Mario J, Fintelmann FJ, Do S: Pixel-level deep segmentation: Artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging 30:487–498, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kullberg J, Hedström A, Brandberg J, Strand R, Johansson L, Bergström G, Ahlström H: Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies. Sci Rep 7:10425, 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Middleton MS, Haufe W, Hooker J, Borga M, Dahlqvist Leinhard O, Romu T, Tunón P, Hamilton G, Wolfson T, Gamst A, Loomba R, Sirlin CB: Quantifying abdominal adipose tissue and thigh muscle volume and hepatic proton density fat fraction: Repeatability and accuracy of an MR imaging-based, Semiautomated analysis method. Radiology 283:438–449, 2017

    Article  PubMed  Google Scholar 

  38. Xu Z, Conrad BN, Baucom RB, Smith SA, Poulose BK, Landman BA: Abdomen and spinal cord segmentation with augmented active shape models. J Med Imaging (Bellingham) 3:036002, 2016

    Article  Google Scholar 

  39. Sharp GC, Peroni M, Li R, Shackleford J, Kandasamy N: Evaluation of plastimatch B-spline registration on the EMPIRE10 data set. Medical Image Analysisfor the Clinic: A Grand Challenge 99–108, 2010

  40. Morsbach F, Zhang Y-H, Nowik P, Martin L, Lindqvist C, Svensson A, Brismar TB: Influence of tube potential on CT body composition analysis. Nutrition 53:9–13, 2018

  41. Yamada Y, Jinzaki M, Niijima Y, Hashimoto M, Yamada M, Abe T, Kuribayashi S: CT dose reduction for visceral adipose tissue measurement: Effects of model-based and adaptive statistical iterative reconstructions and filtered Back projection. AJR Am J Roentgenol 204:W677–W683, 2015

    Article  PubMed  Google Scholar 

  42. Fuchs G, Chretien YR, Mario J, Do S, Eikermann M, Liu B, Yang K, Fintelmann FJ: Quantifying the effect of slice thickness, intravenous contrast and tube current on muscle segmentation: Implications for body composition analysis. Eur Radiol 28:2455–2463, 2018

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Decazes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decazes, P., Tonnelet, D., Vera, P. et al. Anthropometer3D: Automatic Multi-Slice Segmentation Software for the Measurement of Anthropometric Parameters from CT of PET/CT. J Digit Imaging 32, 241–250 (2019). https://doi.org/10.1007/s10278-019-00178-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-019-00178-3

Keywords

Navigation