Advertisement

Software & Systems Modeling

, Volume 17, Issue 1, pp 115–134 | Cite as

On the impact of size to the understanding of UML diagrams

  • Harald Störrle
Special Section Paper

Abstract

Background

Practical experience suggests that usage and understanding of UML diagrams is greatly affected by the quality of their layout. While existing research failed to provide conclusive and comprehensive evidence in support of this hypothesis, our own previous work provided substantial evidence to this effect, also suggesting diagram size as a relevant factor, for a range of diagram types and layouts.

Aims

Since there is no generally accepted precise notion of “diagram size,” we first need to operationalize this concept, analyze its impact on diagram understanding, and derive practical advice from our findings.

Method

We define three alternative, plausible metrics. Since they are all highly correlated on a large sample of UML diagrams, we opt for the simplest one. We use it to re-analyze existing experimental data on diagram understanding.

Results

We find a strong negative correlation between diagram size and modeler performance. Our results are statistically highly significant and exhibit a very large degree of validity. We utilize these results to derive a recommendation on diagram sizes that are, on average, optimal for model understanding. These recommendations are implemented in a plug-in to a widely used modeling tool, providing continuous feedback about diagram size to modelers.

Conclusions

The effect sizes are varying, but generally suggest that the impact of size matches or exceeds that of other factors in diagram understanding. With the guideline and tool, modelers are steered toward avoiding too large diagrams.

Keywords

Diagram understanding Diagram size metrics Cognitive load Experiment Gestalt principles 

References

  1. 1.
    Abrahão, S., Gravino, C., Insfrán, E., Scanniello, G., Tortora, G.: Assessing the effectiveness of sequence diagrams in the comprehension of functional requirements: results from a family of five experiments. IEEE Trans. Softw. Eng. 39(3), 327–342 (2013)CrossRefGoogle Scholar
  2. 2.
    Britton, C., Kutar, M., Anthony, S., Barker, T., Beecham, S., Wilkinson, V.: An empirical study of user preference and performance with UML diagrams. In: Proceedings of IEEE 2002 Symposium Human Centric Computing Languages and Environments (HCC/LE), pp. 31–33. IEEE (2002)Google Scholar
  3. 3.
    Dawoodi, S.Y.: Assessing the comprehension of UML class diagrams via eye tracking. Master’s thesis, Kent State University (2007)Google Scholar
  4. 4.
    Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G., North, C.: A comparison of user-generated and automatic graph layouts. IEEE Trans Vis Comput Graph 15(6), 961–968 (2009)CrossRefGoogle Scholar
  5. 5.
    Effinger, P., Jogsch, N., Seiz, S.: On a study of layout aesthetics for business process models using BPMN. In: Proceedings of 2nd International Workshop Business Process Modeling Notation (BPMN), pp. 31–45. Springer (2010)Google Scholar
  6. 6.
    Eichelberger, H.: Aesthetics of class diagrams. In: Proceedings of 1st International Workshop Visualizing Software for Understanding and Analysis (VISSOFT), pp. 23–31. IEEE (2002)Google Scholar
  7. 7.
    Eichelberger, H.: Aesthetics and automatic layout of UML class diagrams. Ph.D. thesis, University of Würzburg (2005)Google Scholar
  8. 8.
    Eichelberger, H.: Automatic layout of UML use case diagrams. In: Proceedings of 4th ACM Symposium on Software Visualization (SOFTVIS), pp. 105–114. ACM (2008)Google Scholar
  9. 9.
    Eichelberger, H., Schmid, K.: Guidelines on the aesthetic quality of UML class diagrams. Inf. Softw. Technol. 51(12), 1686–1698 (2009)CrossRefGoogle Scholar
  10. 10.
    Eiglsperger, M.: Automatic layout of UML class diagrams: a topology-shape-metrics approach. Ph.D. thesis, Univ. Tübingen (2003)Google Scholar
  11. 11.
    Fish, A., Störrle, H.: Visual qualities of the unified modeling language: deficiencies and improvements. In: Cox, P., Hosking, J. (eds.) Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 41–49. IEEE Computer Society (2007)Google Scholar
  12. 12.
    Gopher, D., Braune, R.: On the psychophysics of workload: why bother with subjective measures? Hum. Factors 26(5), 519–532 (1984)CrossRefGoogle Scholar
  13. 13.
    Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. J. Vis. Lang. Comput. 7, 131–174 (1996)CrossRefGoogle Scholar
  14. 14.
    Gurr, C.A.: Effective diagrammatic communication: syntactic, semantic and pragmatic issues. J. Vis. Lang. Comput. 10, 317–342 (1999)CrossRefGoogle Scholar
  15. 15.
    Karasneh, B., Chaudron, M.: Online Img2UML repository: an online repository for UML models. In: International Worshop Experiences and Empirical Studies in Software Modelling (EESSMod) (2013). Co-located MoDELS’13. http://cse-poros.cse.chalmers.se
  16. 16.
    Koffka, K.: Principles of Gestalt Psychology. Routledge & Kegan Paul, London (1935)Google Scholar
  17. 17.
    Köhler, W.: Die physischen Gestalten in Ruhe und im stationären Zustand. Verlage der philosophischen Akademie, Erlangen (1924)Google Scholar
  18. 18.
    Maier, A.M., Baltsen, N., Christoffersen, H., Störrle, H.: Towards diagram understanding: a pilot-study measuring cognitive workload through eye-tracking. In: Proceedings of International Conference on Human Behavior in Design (2014)Google Scholar
  19. 19.
    Marriott, K., Meyer, B. (eds.): Visual Language Theory. Springer, New York (1998)MATHGoogle Scholar
  20. 20.
    Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understandable? In: Alonso, G., et al. (eds.) Proceedings of International Conference on Business Process Management, pp. 48–63. Springer, New York (2007)Google Scholar
  21. 21.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)CrossRefGoogle Scholar
  22. 22.
    Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)CrossRefGoogle Scholar
  23. 23.
    Oberlander, J.: Grice for graphics: pragmatic implicature in network diagrams. Inf. Des. J. 8(2), 163–179 (1996)Google Scholar
  24. 24.
    OMG: OMG Unified Modeling Language (OMG UML). Version 2.5. Technical Report, Object Management Group (2013). ptc/2013-09-05Google Scholar
  25. 25.
    Paas, F., Tuovinen, J.E., Tabbers, H., Van Gerven, P.W.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38(1), 63–71 (2003)CrossRefGoogle Scholar
  26. 26.
    Petre, M.: Why looking isn’t always seeing: readership skills and graphical programming. Commun. ACM 38, 33–44 (1995)CrossRefGoogle Scholar
  27. 27.
    Pfleeger, S.L.: Experimental design and analysis in software engineering. Ann. Softw. Eng. 1(1), 219–253 (1995)CrossRefGoogle Scholar
  28. 28.
    Plass, J.L., Moreno, R., Brünken, R.: Cognitive Load Theory. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  29. 29.
    Purchase, H., Colpoys, L., Carrington, D., McGill, M.: UML class diagrams: an empirical study of comprehension. In: Zhang, K. (ed.) Software-Visualization: From Theory to Practice, pp. 149–178. Kluwer, Boston (2003)CrossRefGoogle Scholar
  30. 30.
    Purchase, H.C.: Metrics for graph drawing aesthtetics. J. Vis. Lang. Comput. 13(5), 501–516 (2002)CrossRefGoogle Scholar
  31. 31.
    Purchase, H.C., Allder, J.A., Carrington, D.A.: Graph layout aesthetics in UML diagrams: user preferences. J. Graph Algorithms Appl. 6(3), 255–279 (2002)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Purchase, H.C., Carrington, D., Allder, J.A.: Empirical evaluation of aesthetics-based graph layout. J. Empir. Softw. Eng. 7(3), 233–255 (2002)CrossRefMATHGoogle Scholar
  33. 33.
    Purchase, H.C., Carrington, D.A., Allder, J.A.: Experimenting with aesthetics-based graph layout. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Proceedings of International Conference on Theory and Application of Diagrams (Diagrams), no. 1889 in LNAI, pp. 489–501. Springer, Heidelberg (2000)Google Scholar
  34. 34.
    Purchase, H.C., Colpoys, L., McGill, M., Carrington, D.: UML collaboration diagram syntax: an empirical study of comprehension. In: Proceedings of 1st International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT), pp. 13–22. IEEE CS (2002)Google Scholar
  35. 35.
    Recker, J., Dreiling, A.: Does it matter which process modelling language we teach or use? An experimental study on understanding process modelling languages without formal education. In: Toleman, M., Cater-Steel, A., Roberts, D. (eds.) Proceedings of 18th Australasian Conference on Information Systems. University of Southern Queensland (2007). http://eprints.qut.edu.au/12270
  36. 36.
    Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M.: How developers’ experience and ability influence web application comprehension tasks supported by uml stereotypes: a series of four experiments. IEEE Trans. Softw. Eng. 36(1), 96–118 (2010)CrossRefGoogle Scholar
  37. 37.
    Schürr, A., Klar, F.: 15 years of triple graph grammars. Research challenges, new contributions, open problems. In: Ehrig, H., et al. (eds.) International Conference on Graph Transformation (ICGT’08), no. 5214 in LNCS, pp. 411–425. Springer, Heidelberg (2008)Google Scholar
  38. 38.
    Seemann, J.: Extending the Sugiyama algorithm for drawing UML class diagrams: towards automatic layout of object-oriented software diagrams. In: Proceedings of International Conference on Graph Drawing (GD), pp. 415–424. Springer (1997)Google Scholar
  39. 39.
    Selic, B., Kent, S., Evans, A. (eds.): Proceedings of 3rd International Conference on Unified Modeling Language (UML’00), no. 1939 in LNCS. Springer (2000)Google Scholar
  40. 40.
    Sharif, B.: Empirical assessment of UML class diagram layouts based on architectural importance. In: Proceedings of International Conference on Software Maintenance (ICSM), pp. 544–549. IEEE (2011)Google Scholar
  41. 41.
    Sharif, B., Maletic, J.I.: An empirical study on the comprehension of stereotyped UML class diagram layouts. In: Proceedings of 17th IEEE International Conference on Program Comprehension (ICPC), pp. 268–272. IEEE (2009)Google Scholar
  42. 42.
    Sharif, B., Maletic, J.I.: The effect of layout on the comprehension of UML class diagrams: a controlled experiment. In: Proceedings of 5th International Workshop on Visualizing Software for Understanding & Analysis (VISSOFT), pp. 11–18. IEEE (2009)Google Scholar
  43. 43.
    Sharif, B., Maletic, J.I.: An eye tracking study on the effects of layout in understanding the role of design patterns. In: Proceedings of 2010 IEEE International Conference on Software Maintenance (ICSM), pp. 41–48. IEEE (2010)Google Scholar
  44. 44.
    Sharif, B., Maletic, J.I.: The Effects of Layout on Detecting the Role of Design Patterns. In: Proceedings of 23rd IEEE Conference on Software Engineering Education and Training (CSEE&T), pp. 41–48. IEEE (2010)Google Scholar
  45. 45.
    Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., Saake, G., Brechmann, A.: Understanding understanding source code with functional magnetic resonance imaging. In: Proceedings of ACM/IEEE International Conference on Software Engineering (ICSE), pp. 378–389. ACM Press (2014)Google Scholar
  46. 46.
    Soh, Z., Sharafi, Z., Van den Plas, B., Porras, G.C., Guéhéneuc, Y.G., Antoniol, G.: Professional status and expertise for UML class diagram comprehension: an empirical study. In: Proceedings of International Conference on Program Comprehension (ICPC), pp. 163–172. IEEE (2012)Google Scholar
  47. 47.
    Störrle, H.: On the Impact of Layout Quality to Understanding UML Diagrams. In: Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 135–142. IEEE Computer Society (2011)Google Scholar
  48. 48.
    Störrle, H.: On the impact of layout quality to understanding UML diagrams: diagram type and expertise. In: Costagliola, G., et al. (eds.) Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 195–202. IEEE Computer Society, (2012)Google Scholar
  49. 49.
    Störrle, H.: On the impact of layout quality to understanding UML diagrams: size matters. In: Dingel, J., et al. (eds.) Proceedings of 17th International Conference on Model Driven Engineering Languages and Systems (MoDELS), no. 8767 in LNCS, pp. 518–534. Springer (2014)Google Scholar
  50. 50.
    Störrle, H., Baltsen, N., Christoffersen, H., Maier, A.M.: On the impact of diagram layout: how are models actually read? In: Sauer, S., others (eds.) Joint Proceedings of MODELS 2014 Poster Session and the ACM Student Research Competition, vol. 1258, pp. 31–35. CEUR (2014)Google Scholar
  51. 51.
    Störrle, H., Fish, A.: Towards an operationalization of the “physics of notations” for the analysis of visual languages. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) 16th International Conference on Model Driven Engineering Languages and Systems (MoDELS’13), no. 8107 in LNCS, pp. 104–120. Springer (2013)Google Scholar
  52. 52.
    Swan, J., Kutar, M., Barker, T., Britton, C.: User preference and performance with UML interaction diagrams. In: Proceedings of 2004 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 243–250. IEEE (2004)Google Scholar
  53. 53.
    Tomonaga, M., Matsuzawa, T.: Perception of complex geometric figures in chimpanzees (Pan troglodytes) and humans (Homo sapiens): analyses of visual similarity on the basis of choice reaction time. J. Comp. Psychol. 106(1), 43–52 (1992)CrossRefGoogle Scholar
  54. 54.
    Wong, K., Sun, D.: On evaluating the layout of UML diagrams for program comprehension. Softw. Qual. J. 14(3), 233–259 (2006)CrossRefGoogle Scholar
  55. 55.
    Yusuf, S., Kagdi, H., Maletic, J.I.: Assessing the comprehension of UML class diagrams via eye tracking. In: 15th International Conference on Program Comprehension (ICPC’07), pp. 113–122. IEEE CS (2007)Google Scholar
  56. 56.
    Zimbardo, P.G.: Psychology, 18th International edition Pearson Education (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations