Skip to main content
Log in

Cancers secondaires des radiothérapies

Second malignancies following radiation therapy

  • Original
  • Published:
Oncologie

Résumé

Depuis maintenant plus de 20 ans, on assiste á une augmentation réulière de la survie des patients après le diagnostic d’un cancer. Malgré les efforts pour cibler leur action sur les cellules cancéreuses, la chimiothérapie et la radiothérapie atteignent les tissus sains et ont des effets cancérogènes sur ces tissus. L’étude des cancers secondaires aux radiothérapies a fait l’objet d’un grand nombre d’études, avec ou sans estimation de la dose de radiation reçue à leur siège, mais les résultats sont sou-vent contradictoires. Il n’existe tou-jours pas de modèle capable de prédire le risque de cancer secondaire associé à une radiothérapie donnée, ce qui implique qu’on ne peut anticiper les conséquences des techniques nouvelles de radiothérapie telles que l’IMRT.

Abstract

For more than 20 years, cancer survival rates have been increasing. In spite of efforts to target only cancerous cells, chemotherapy and radiotherapy reach healthy tissue and have carcinogenic effects. A large number of studies, with and without precise dosimetric evaluations, have investigated malignancies secondary to radiation therapy, but their results have often been contradictory. There is still no model able to predict the risk of secondary cancer associated with a given radiotherapy, implying that it is impossible to anticipate the consequences of new radiotherapy techniques such as IMRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

IMRT:

radiothérapie par modulation d’intensité

RR:

Risque Relatif

ERR:

Excès de risque relatif

Références

  1. Tubiana M, Amiel JL, Hayat M, et al. (1983) Current trend in the treatment of Hodgkin’s disease. Radiat Med 1: 221–229

    PubMed  CAS  Google Scholar 

  2. Terracini B, Coebergh JW, Gatta G, et al. (2001) Childhood cancer survival in Europe: an overview. Eur J Cancer 37: 810–816

    Article  PubMed  CAS  Google Scholar 

  3. Sant M, Allemani C, Capocaccia R, et al. (2003) Stage at diagnosis is a key explanation of differences in breast cancer survival across Europe. Int J Cancer 106: 416–422

    Article  PubMed  CAS  Google Scholar 

  4. Sant M, Capocaccia R, Coleman MP, et al. (2001) Cancer survival increases in Europe, but international differences remain wide. Eur J Cancer 37: 1659–1667

    Article  PubMed  CAS  Google Scholar 

  5. Colonna M, Hedelin G, Esteve J, et al. (2000) National cancer prevalence estimation in France. Int J Cancer 87: 301–304

    Article  PubMed  CAS  Google Scholar 

  6. Kry SF, Salehpour M, Followill DS, et al. (2005) The calculated risk of fatal second malignancies from intensity-modulated-radiation-therapy. In: J Radiat Oncol Biol Phys 62: 1195–1203

    Article  Google Scholar 

  7. D’Amico V, Moul J, Carroll P, et al. (2003) Cancer-specific mortality after surgery or radiation for patients with clinically localized prostate cancer managed during the prostate-specific antigenera. J Clin Oncol 21: 2163–2172

    Article  PubMed  Google Scholar 

  8. Bourgois L, Delacroix D, Ostrowsky A (1997) Use of Bubble detectors to measure neutron contamination of a medical accelerator photon beam. Radiation Protection Dosimetry 74: 239–246

    CAS  Google Scholar 

  9. Chibania O, Ma C-MC (2003) Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs. Med Phys 30: 1990–2000

    Article  Google Scholar 

  10. Stovall M, Donaldson SS, Weathers RE, et al. (2004) Genetic effects of radio-therapy for childhood cancer: Gonadal dose reconstruction. Int J Radiat Oncol Biol Phys 60: 542–552

    Article  PubMed  Google Scholar 

  11. Van der Giessen PH (1996) Collimator-related radiation dose for different cobalt machines and linear accelerators. Int J Radiat Oncol Biol Phys 35: 399–405

    Article  PubMed  Google Scholar 

  12. Francois P, Beurtheret C, Dutreix A, et al. (1988) A mathematical child phantom for the calculation of dose to the organs at risk. Med Phys 5: 328–333

    Article  Google Scholar 

  13. Diallo I, Lamon A, Shamsaldin A, et al. (1996) Estimation of the radiation dose delivered to any point outside the target volume per patient treated with external beam radio-therapy. Radiother Oncol 38: 269–271

    Article  PubMed  CAS  Google Scholar 

  14. Ligot L, Diallo I, Shamsaldin A, et al. (1998) Individualized phantom based on CT slices and auxological data (ICTA) for dose estimations following radiotherapy for skin haemangioma in childhood. Radiother Oncol 49: 279–285

    Article  PubMed  CAS  Google Scholar 

  15. Shamsaldin A, Grimaud E, Hardiman C, et al. (1998) Dose distribution throughout the body from radiotherapy for Hodgkin’s disease in childhood. Radiother Oncol 49:85–90

    Article  PubMed  CAS  Google Scholar 

  16. Rubino C, de Vathaire F, Shamsaldin A, et al. (2003) Radiation dose, chemotherapy, hormonal treatment and risk of second cancer after breast cancer treatment. Br J Cancer 89: 840–846

    Article  PubMed  CAS  Google Scholar 

  17. M’Kacher R, Legal JD, Schlumberger M, et al. (1997) Sequential biological dosimetry after a single treatment with iodine-131 for differentiated thyroid carcinoma. Nucl Med 38: 377–380

    CAS  Google Scholar 

  18. Bolster AA, Hilditch TE (1996) The radiation dose to the urinary bladder in radio-iodine therapy. Phys Med Biol 41:1993–2008

    Article  PubMed  CAS  Google Scholar 

  19. Bassal M, Mertens AC, Taylor L, et al. (2006) Risk of Selected Subsequent Carcinomas in Survivors of Childhood Cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol 24: 476–483

    Article  PubMed  Google Scholar 

  20. Robison LL, Mertens AC, Boice JD (2002) Study design and cohort characteristics of the Childhood Cancer Survivor Study: a multi-institutional collaborative project. Med Pediatr Oncol 38: 229–239

    Article  PubMed  Google Scholar 

  21. Taylor AJ, Winter DL, Stiller CA, et al. (2007) Risk of breast cancer in female survivors of childhood Hodgkin’s disease in Britain: a population-based study. Int J Cancer 120: 384–391

    Article  PubMed  CAS  Google Scholar 

  22. Jenkinson HC, Hawkins MM, Stiller CA, et al. (2004) Long-term population-based risks of second malignant neoplasms after childhood cancer in Britain. Br J Cancer 91: 1905–1910

    Article  PubMed  CAS  Google Scholar 

  23. Garwicz S, Anderson H, Olsen JH, et al. (2000) Second malignant neoplasms after cancer in childhood and adolescence: a population-based case-control study in the 5 Nordic countries. The Nordic Society for Pediatric Hematology and Oncology. The Association of the Nordic Cancer Registries. Int J Cancer 88: 672–678

    Article  PubMed  CAS  Google Scholar 

  24. Svahn Tapper G, Garwicz S, Anderson H (2006) Radiation dose and relapse are predictors for development of second malignant solid tumors after cancer in childhood and adolescence: a population-based case-control study in the five Nordic countries. Acta Oncologica 45: 438–448

    Article  PubMed  Google Scholar 

  25. De Vathaire F, Hawkins M, Campbell S, et al. (1999) Second malignant neplasms after a first cancer in childhood: temporal pattern of risk according to type of treatment. Br J Cancer 79: 1884–1893

    Article  PubMed  Google Scholar 

  26. De Vathaire F, Shamsaldin A, Grimaud E, et al. (1995) Solid malignant neoplasms after childhood irradiation: decrease of the relative risk with time after irradiation. CRASP 318: 483–490

    Google Scholar 

  27. Le Deley MC, Leblanc T, Shamsaldin A, et al. (2003) Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophyllotoxins and anthracyclines: a case-control study by the Société française d’oncologie pédiatrique. J Clin Oncol 21: 1074–1081

    Article  PubMed  CAS  Google Scholar 

  28. Le Vu B, de Vathaire F, Shamsaldin A, et al. (1998) Radiation dose, chemotherapy and risk of bone sarcoma after cancer in childhood. Int J Cancer 77: 370–377

    Article  PubMed  Google Scholar 

  29. Menu-Branthomme A, Rubino C, Shamsaldin A, et al. (2004) Radiation dose, chemotherapy and risk of soft tissue sarcoma after solid tumours during childhood. Int J Cancer 110: 87–93

    Article  PubMed  CAS  Google Scholar 

  30. Hawkins MM, Wilson LM, Burton HS, et al. (1996) Radiotherapy, alkylating agents, and risk of bone cancer after childhood cancer. J Natl Cancer Inst 88: 270–278

    Article  PubMed  CAS  Google Scholar 

  31. Tucker MA, D’Angio GJ, Boice JD Jr, et al. (1987) Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med 317: 588–593

    Article  PubMed  CAS  Google Scholar 

  32. Little MP, de Vathaire F, Shamsaldin A, et al. (1998) Risks of brain cancer following treatment for cancer in childhood: modification by genetic factors, radiotherapy, chemotherapy. Int J Cancer 78: 269–275

    Article  PubMed  CAS  Google Scholar 

  33. Guérin S, Dupuy A, Anderson H, et al. (2003) Radiation dose and primary diagnosis as risk factors for malignant melanoma following childhood cancer. Eur J Cancer 39: 2379–2386

    Article  PubMed  Google Scholar 

  34. Ronckers CM, Sigurdson AJ, Stovall M, et al. (2006) Thyroid Cancer in Childhood Cancer Survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res 166: 618–628

    Article  PubMed  CAS  Google Scholar 

  35. De Vathaire F, Hardiman C, Shamsaldin A, et al. (1999) Thyroid carcinoma following irradiation for a first cancer during childhood. Arch Int Med 159: 2713–2719

    Article  Google Scholar 

  36. Kenney LB, Yasui Y, Inskip PD, et al. (2004) Breast Cancer after Childhood Cancer: a report from the Childhood Cancer Survivor Study. Ann Int Med 141: 590–597

    PubMed  Google Scholar 

  37. Guibout C, Adjadj E, Rubino C, et al. (2005) Malignant breast tumours following radiotherapy for a first cancer during childhood. J Clin Oncol 22: 197–194

    Google Scholar 

  38. Kony S, de Vathaire F, Chompret A, et al. (1997) Radiation and genetic factors in the risk of second malignant neoplasm after a first cancer in childhood. Lancet 350: 91–96

    Article  PubMed  CAS  Google Scholar 

  39. Guérin S, Guibout C, Diallo I, et al. (2007) Concomitant chemo-radiotherapy and local dose of radiation as risk factors for second malignant neoplasms after cancer in childhood: a case-control study. Int J Cancer 120: 96–120

    Article  PubMed  CAS  Google Scholar 

  40. Boice JD, Day NE, Andersen A, et al. (1985) Second cancers following radiation treatment for cervical cancer. An international collaboration among cancer registries. J Natl Cancer Inst 74: 955–975

    PubMed  Google Scholar 

  41. Boice JD, Engholm G, Kleinerman RA, et al. (1988) Radiation dose and second cancer risk in patients treated for cancer of the cervix. Radiat Res 116: 3–55

    Article  PubMed  Google Scholar 

  42. EBCTG (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366: 2087–2106

    Google Scholar 

  43. Mellemkær L, Friis S, Jørgen H, et al. (2006) Risk of second cancer among women with breast cancer. Int J Cancer 118: 2285–2292

    Article  CAS  Google Scholar 

  44. Raymond JS, Hogue1 CRJ (2006) Multiple primary tumours in women following breast cancer, 1973–2000. Br J Cancer 94: 1745–1750

    PubMed  CAS  Google Scholar 

  45. Rubino C, Shamsaldin A, Le MG (2005) Radiation dose and risk of soft tissue and bone sarcoma after breast cancer treatment. Breast Cancer Res Treat 89: 277–288

    Article  PubMed  Google Scholar 

  46. Rubino C, de Vathaire F, Diallo I, et al. (2002) Radiation dose, chemotherapy and risk of lung cancer after breast cancer treatment. Breast Cancer Res Treat 75: 15–24

    Article  PubMed  CAS  Google Scholar 

  47. Schonfeld SJ, Gilbert ES, Dores GM, et al. (2006) Acute myeloid leukemia following Hodgkin lymphoma: a Population-Based Study of 35,511 patients. J Natl Cancer Inst 98: 215–218

    Article  PubMed  Google Scholar 

  48. Graça M, DoresTravis LB, Hill DA, et al. (2005) Cumulative absolute breast cancer risk for young women treated for Hodgkin lymphoma. J Natl Cancer Inst 97: 1428–1437

    Article  Google Scholar 

  49. Kony S, de Vathaire F, Chompret A, et al. (1997) Radiation and genetic factors in the risk of second malignant neoplasm after a first cancer in childhood. Lancet 350: 91–96

    Article  PubMed  CAS  Google Scholar 

  50. Rubino C, Adjadj E, Doyon F, et al. (2005) Radiation exposure and familial aggregation of cancers as risk factors for colorectal cancer after radioiodine treatment for thyroid carcinoma. Intern J Radiat Oncol Biol Phys 62: 1084–1089

    Article  CAS  Google Scholar 

  51. Hill DA, Gilbert E, Dores GM, et al. (2005) Breast cancer risk following radiotherapy for Hodgkin lymphoma: modification by other risk factors. Blood 106: 3358–3365

    Article  PubMed  CAS  Google Scholar 

  52. Averbeck D (2000) Mechanisms of repair and radiation-induced mutagenesis in higher eukaryotes. Cancer Radiother 4:335–354

    PubMed  CAS  Google Scholar 

  53. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374

    Article  PubMed  CAS  Google Scholar 

  54. Wood RD, Mitchell M, Sgouros J, et al. (2001) DNA repairs genes. Science 291:1284–1289

    Article  PubMed  CAS  Google Scholar 

  55. Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11: 1513–1530

    PubMed  CAS  Google Scholar 

  56. Gal TJ, Huang WY, Chen C, et al. (2005) DNA repair gene polymorphisms and risk of second primary neoplasms and mortality in oral cancer patients. Laryngoscope 115: 2221–2231

    Article  PubMed  CAS  Google Scholar 

  57. Brewster AM, Alberg AJ, Strickland PT, et al. (2004) XPD polymorphism and risk of subsequent cancer in individuals with nonmelanoma skin cancer. Cancer Epidemiol Biomarkers Prev 13:1271–1275

    PubMed  CAS  Google Scholar 

  58. Seedhouse C, Faulkner R, Ashraf N, et al. (2004) Polymorphisms in genes involved in homologous recombination repair interacts to increase the risk of develop ing acute myeloid leukemia. Clin Cancer Res 10: 2675–2680

    Article  PubMed  CAS  Google Scholar 

  59. Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56: 83–88

    Article  PubMed  Google Scholar 

  60. Kry SF, Salehpour M, Followill DS, et al. (2005) The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 62: 1195–1203

    Article  PubMed  Google Scholar 

  61. Hall EJ (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65:1–7

    Article  PubMed  Google Scholar 

  62. Shuryak I, Sachs RK, Hlatky L, et al. (2006) Radiation-induced leukemia at doses relevant to radiation therapy: modeling mechanisms and estimating risks. J Natl Cancer Inst 98: 1794–1806

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. de Vathaire.

About this article

Cite this article

de Vathaire, F., Haddy, N. & Diallo, I. Cancers secondaires des radiothérapies. Oncologie 9, 352–360 (2007). https://doi.org/10.1007/s10269-007-0644-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-007-0644-y

Mots clés

Keywords

Navigation