An update on applications of 3D printing technologies used for processing polymers used in implant dentistry

Abstract

Polymer additive manufacturing (AM) technologies have been incorporated in digital workflows within implant dentistry. This article reviews the main polymer AM technologies in implant dentistry, as well as their applications in the field such as manufacturing surgical guides, custom trays, working implant casts, and provisional restorations.

This is a preview of subscription content, log in to check access.

Fig. 1

Illustration courtesy of Additively.com

Fig. 2

References

  1. 1.

    Witkowski S. CAD-/CAM in dental technology. Quintessence Dent Technol. 2005;28:169–84.

    Google Scholar 

  2. 2.

    Torabi K, Farjood E, Hamedani S. Rapid prototyping technologies and their applications in prosthodontics, a review of literature. J Dent Shiraz Univ Med Sci. 2015;16:1–9.

    Google Scholar 

  3. 3.

    Revilla-León M, Özcan M. Additive manufacturing technologies used for 3D metal printing in dentistry. Curr Oral Health Rep. 2017;4:201–9.

    Article  Google Scholar 

  4. 4.

    Revilla-León M, Özcan M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont. 2019;28:146–58.

    PubMed  Article  Google Scholar 

  5. 5.

    ISO/ASTM 52900:2015 (ASTM F2792). Additive manufacturing—general principles and terminology. https://www.iso.org/standard/69669.html?browse=tc. Last Accessed June 2019.

  6. 6.

    ASTM, Committee F42 on additive manufacturing technologies, West Conshohocken, Pa. 2009 Standard terminology for additive manufacturing—general principles and terminology. http://web.mit.edu/2.810/www/files/readings/AdditiveManufacturingTerminology.pdf. Accessed May 2019.

  7. 7.

    ISO 17296-2:2015. Additive manufacturing—general principles—part 2: overview of process categories and feedstock. https://www.iso.org/standard/61626.html?browse=tc. Last accessed June 2019.

  8. 8.

    Kodama H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum. 1981;52:1770.

    Article  Google Scholar 

  9. 9.

    3D Systems, Inc. Stereolithography interface specification. Valencia: 3D Systems, Inc; 1988.

    Google Scholar 

  10. 10.

    Hull CW. Apparatus for production of three-dimensional objects by stereolithography, US Patent. 4575330, 1986.

  11. 11.

    Hull CW, Spence ST, Albert DJ, Smalley DR, Harlow RA, Steinbaugh P, Tarnoff HL, Nguyen HD, Lewis CW, Vorgitch TJ, Remba DZ. Method and apparatus for production of three-dimensional objects by stereolithography, US Patent. 5059359, 1991.

  12. 12.

    Hull CW, Spence ST, Albert DJ, Smalley DR, Harlow RA, Stinebaugh P, Tarnoff HL, Nguyen HD, Lewis CW, Vorgitch TJ, Remba DZ. Method and apparatus for production of high-resolution three-dimensional objects by stereolithography, US Patent. 5184307, 1993.

  13. 13.

    André JC, Cabrera M, Jezequel JY, Méhauté A. French Patent 2583333, 1985.

  14. 14.

    André JC, Méhauté A, Witthe O. Dispositif pour realiser un module de piece industrielle, French Patent. 8411241, 1984.

  15. 15.

    Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32:54–64.

    PubMed  Article  Google Scholar 

  16. 16.

    Liska R, Schuster M, Infuhr R, Tureeek C, Fritscher C, Seidl B, Schmidt V, Kuna L, Haase A, Varga F, Lichtenegger H, Stampfl J. Photopolymers for rapid prototyping. J Coat Technol Res. 2007;4:505–10.

    Article  Google Scholar 

  17. 17.

    Infuehr R, Pucher N, Heller C, Lichtenegger H, Liska R, Schmidt V, Kuna L, Haase A, Stampfl J. Functional polymers by two-photon 3D lithography. Appl Surf Sci. 2007;254:836–40.

    Article  Google Scholar 

  18. 18.

    Reeves P. Additive manufacturing—a supply chain wide response to economic uncertainty and environmental sustainability. Derbyshire: Econolyst Limited, The Silversmiths; 2009.

    Google Scholar 

  19. 19.

    Petrovic V, Gonzalez JVH, Ferrando OJ, Gordillo JD, Puchades JRB, Grinan LP. Additive layered manufacturing: sectors of industrial application shown through case studies. Int J Prod Res. 2011;49:1061–79.

    Article  Google Scholar 

  20. 20.

    Hornbeck L. Digital micromirror device. US Patent. No. 5.061.049. 2009.

  21. 21.

    Groth C, Kravitz ND, Jones PE, Graham JW, Redmond WR. Three-dimensional printing technology. J Clin Orthod. 2014;48:475–85.

    PubMed  Google Scholar 

  22. 22.

    Bartolo PJ. Stereolithography: materials, processes and applications. New York: Springer; 2011.

    Google Scholar 

  23. 23.

    Singh V. Rapid prototyping, materials for RP and applications of RP. Int J Eng Res Sci. 2013;4:473–80.

    Google Scholar 

  24. 24.

    Fahad M, Dickens P, Gilbert M. Novel polymeric support materials for jetting based additive manufacturing processes. Rapid Prototyp J. 2013;19:230–9.

    Article  Google Scholar 

  25. 25.

    Glossary of prosthodontic terms. 9th Ed. J Prosthet Dent. 2017; 117:e24.

  26. 26.

    Klein M, Abrams M. Computer-guided surgery utilizing a computer-milled surgical template. Pract Periodontics Aesthet Dent. 2001;13:165–9.

    Google Scholar 

  27. 27.

    Tyndall DA, Price JB, Tetradis S, Ganz SD, Hildebolt C, Scarfe WC. Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:817–26.

    PubMed  Article  Google Scholar 

  28. 28.

    Ganz SD. Three-dimensional imaging and guided surgery for dental implants. Dent Clin North Am. 2015;59:265–90.

    PubMed  Article  Google Scholar 

  29. 29.

    Tapie L, Lebon N, Mawussi B, Fron HC, Duret F, Attal JP. Understanding dental CAD/CAM for restorations—the digital workflow from a mechanical engineering view-point. Int J Comput Dent. 2015;18:21–44.

    PubMed  Google Scholar 

  30. 30.

    Rosenfeld AL, Mandelaris GA, Tardieu PB. Prosthetically directed implant placement using computer software to ensure precise placement and predictable prosthetic outcomes. Part 1: diagnostics, imaging, and collaborative accountability. Int J Periodontics Restor Dent. 2006;26:215–21.

    Google Scholar 

  31. 31.

    Klein M, Abrams M. Computer-guided surgery utilizing a computer-milled surgical template. Pract Proced Aesthet Dent. 2001;13:165–9.

    PubMed  Google Scholar 

  32. 32.

    Tardieu P, Vrielinck L, Escolano E. Computer-assisted implant placement. A case report: Treatment of the mandible. Int J Oral Maxillofac Implants. 2003;18:599–604.

    PubMed  Google Scholar 

  33. 33.

    Jung RE, Schneider D, Ganeles J, Wismeijer D, Zwahlem M, Hämmerle CH, Tahmaseb A. Computer technology applications in surgical implant dentistry: a systematic review. Int J Oral Maxillofac Implants. 2009;24:s92–109.

    Google Scholar 

  34. 34.

    Kühl S, Zürcher S, Mahid T, Müller-Gerbl M, Filippi A, Cattin P. Accuracy of full guided vs. half-guided implant surgery. Clin Oral Implants Res. 2013;24:763–9.

    PubMed  Article  Google Scholar 

  35. 35.

    Van Steenberghe D, Glauser R, Blomback U, Andersson M, Schutyser F, Pettersson A, Wendelhag I. A computed tomographic scan-derived customized surgical template and fixed prosthesis for flapless surgery and immediate loading of implants in fully edentulous maxillae: a prospective multicenter study. Clin Impl Dent Rel Res. 2005;7:S111–20.

    Article  Google Scholar 

  36. 36.

    Widmann G, Bale RJ. Accuracy in computer-aided implant surgery: a review. Int J Oral Maxillofac Implants. 2006;21:305–13.

    PubMed  Google Scholar 

  37. 37.

    Vercruyssen M, Jacobs R, Van Assche N, Van Steenberghe D. The use of CT scan based planning for oral rehabilitation by means of implants and its transfer to the surgical field: a critical review on accuracy. J Oral Rehab. 2008;35:454–74.

    Article  Google Scholar 

  38. 38.

    Bell CK, Sahl EF, Kim YJ, Rice DD. Accuracy of implants placed with surgical guides: thermoplastic versus 3D printed. Int J Periodontics Restor Dent. 2018;38:113–9.

    Article  Google Scholar 

  39. 39.

    Web PA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol. 2000;24:149–53.

    Article  Google Scholar 

  40. 40.

    Van Steenberghe D, Naert I, Andersson M, Brajnovic I, Van Cleynenbreugel J, Suetens P. A custom template and definitive prosthesis allowing immediate implant loading in the maxilla: a clinical report. Int J Oral Maxillofac Implants. 2002;17:663–70.

    PubMed  Google Scholar 

  41. 41.

    Sarment DP, Al-Shammari K, Kazor CE. Stereolithographic surgical templates for placement of dental implants in complex cases. Int J Periodontics Restor Dent. 2003;23:287–95.

    Google Scholar 

  42. 42.

    Sarment DP, Sukovic P, Clinthorne N. Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants. 2003;18:571–7.

    PubMed  Google Scholar 

  43. 43.

    Di Giacomo GA, Cury PR, de Araujo NS, Sendyk WR, Sendyk CL. Clinical application of stereolithographic surgical guides for implant placement: preliminary results. J Periodontol. 2005;76:503–7.

    PubMed  Article  Google Scholar 

  44. 44.

    Ersoy AE, Turkyilmaz I, Ozan O, McGlumphy EA. Reliability of implant placement with stereolithographic surgical guides generated from computed tomography: clinical data from 94 implants. J Periodontol. 2008;79:1339–45.

    PubMed  Article  Google Scholar 

  45. 45.

    Schneider D, Marquardt P, Zwahlen M, Jung RE. A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clin Oral Implant Res. 2009;20:73–86.

    Article  Google Scholar 

  46. 46.

    Vasak C, Watzak G, Gahleitner A, Strbac G, Schemper M, Zechner W. Computed tomography-based evaluation of template (NobelGuideTM)-guided implant positions: a prospective radiological study. Clin Oral Implants Res. 2011;22:1157–63.

    PubMed  Article  Google Scholar 

  47. 47.

    Van Assche N, Vercruyssen M, Coucke W, Teughels W, Jacobs R, Quirynen M. Accuracy of computer-aided implant placement. Clin Oral Implants Res. 2012;23:112–23.

    PubMed  Article  Google Scholar 

  48. 48.

    Tahmaseb A, Wismeijer D, Coucke W, Derkensen W. Computer technology applications in surgical implant dentistry: a systematic review. Int J Oral Maxillofac Implants. 2014;29:25–42.

    PubMed  Article  Google Scholar 

  49. 49.

    Moraschini V, Velloso G, Luz D, Barboza EP. Implant survival rates, marginal bone level changes, and complications in full-mouth rehabilitation with flapless computer-guided surgery: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2015;44:892–901.

    PubMed  Article  Google Scholar 

  50. 50.

    Kernen F, Benic GI, Payer M, Schär A, Müller-Gerbl M, Filippi A, Kühl S. Accuracy of Three-dimensional printed templates for guided implant placement based on matching a surface scan with CBCT. Clin Implant Dent Relat Res. 2016;18:762–8.

    PubMed  Article  Google Scholar 

  51. 51.

    Raico Gallardo YN, da Silva-Olivio IRT, Mukai E, Morimoto S, Sesma N, Cordaro L. Accuracy comparison of guided surgery for dental implants according to the tissue of support: a systematic review and meta-analysis. Clin Oral Implants Res. 2017;28:602–12.

    PubMed  Article  Google Scholar 

  52. 52.

    Bover-Ramos F, Viña-Almunia J, Cervera-Ballester J, Peñarrocha-Diago M, García-Mira B. Accuracy of implant placement with computer-guided surgery: a systematic review and meta-analysis comparing cadaver, clinical, and in vitro studies. Int J Oral Maxillofac Implants. 2018;33:101–5.

    PubMed  Article  Google Scholar 

  53. 53.

    Zhou W, Liu Z, Song L, Kuo CL, Shafer DM. Clinical factors affecting the accuracy of guided implant surgery—a systematic review and meta-analysis. J Evid Base Dent Pract. 2018;18:28–40.

    Article  Google Scholar 

  54. 54.

    Valente F, Schiroli G, Sbrenna A. Accuracy of computer-aided oral implant surgery: a clinical and radiographic study. Int J Oral Maxillofac Implant. 2009;24:234e–42e.

    Google Scholar 

  55. 55.

    Allen S, Dutta D: On the computation of part orientation using support structures in layered manufacturing. In: Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 1994, pp. 259–269.

  56. 56.

    Puebla K, Arcaute K, Quintana R, et al. Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography. Rapid Prototyp J. 2012;18:374–88.

    Article  Google Scholar 

  57. 57.

    Alharbi N, Osman R, Wismeijer D. Effect of build direction on the mechanical properties of 3D printed complete coverage interim dental restorations. J Prosthet Dent. 2016;155:760–7.

    Article  Google Scholar 

  58. 58.

    Brain M, Jimbo R, Wennenberg A. Production tolerance of additive manufactured polymeric objects for clinical applications. Dent Mater. 2016;32:853–61.

    Article  Google Scholar 

  59. 59.

    Ide Y, Nayar S, Logan H, et al. The effect of the angle of acuteness of additive manufactured models and the direction of printing on the dimensional fidelity: clinical implications. Odontology. 2017;105:108–15.

    PubMed  Article  Google Scholar 

  60. 60.

    Plooji JM, Maal TJ, Haers P, et al. Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery: a systematic review. Int J Maxillofac Surg. 2011;40:341–52.

    Article  Google Scholar 

  61. 61.

    Schneider J, Decker R, Kalender WA. Accuracy in medicinal modelling. Phidias Newsl. 2002;8:5–14.

    Google Scholar 

  62. 62.

    Matta RE, Bergauer B, Adler W, Wichmann M, Nickenig HJ. The impact of the fabrication method on the three-dimensional accuracy of an implant surgery template. J Craniomaxillofac Surg. 2017;45:804–8.

    PubMed  Article  Google Scholar 

  63. 63.

    Neumeister A, Schulz L, Glodecki C. Investigations on the accuracy of 3D printed drill guides for dental implantology. Int J Comput Dent. 2017;20:35–51.

    PubMed  Google Scholar 

  64. 64.

    Sommacal B, Savic M, Filippi A, Kühl S, Thieringer FM. Evaluation of two 3D printers for guided implant surgery. Int J Oral Maxillofac Implants. 2018;33:743–6.

    PubMed  Article  Google Scholar 

  65. 65.

    Schneider D, Schober F, Grohmann P, Hammerle CH, Jung RE. In-vitro evaluation of the tolerance of surgical instruments in templates for computer-assisted guided implantology produced by 3-D printing. Clin Oral Implants Res. 2015;26:320–5.

    PubMed  Article  Google Scholar 

  66. 66.

    Bell CK, Sahl EF, Kim YJ, Rice DD. Accuracy of implants placed with surgical guides: thermoplastic versus 3D printed. Int J Periodontics Restor Dent. 2018;38:113–9.

    Article  Google Scholar 

  67. 67.

    Eames WB, Sieweke JC, Wallace SW, Rogers LB. Elastomeric impression materials: effect of bulk on accuracy. J Prosthet Dent. 1979;41:304–7.

    PubMed  Article  Google Scholar 

  68. 68.

    Johnson GH, Craig RG. Accuracy of addition silicones as a function of technique. J Prosthet Dent. 1986;55:197–203.

    PubMed  Article  Google Scholar 

  69. 69.

    Gordon GE, Johnson GH, Drennon DG. The effect of tray selection on the accuracy of elastomeric impression materials. J Prosthet Dent. 1990;63:12–5.

    PubMed  Article  Google Scholar 

  70. 70.

    Revilla-León M, Sánchez-Rubio JL, Oteo-Calatayud J, Özcan M. Impression technique for a complete-arch prosthesis with multiple implants using additive manufacturing technologies. J Prosthet Dent. 2017;117:714–20.

    PubMed  Article  Google Scholar 

  71. 71.

    Revilla-León M, Gonzalez-Martín O, Pérez-López J, Sánchez-Rubio JL, Özcan M. Position accuracy of implant analogs on 3D printed polymer versus conventional dental stone casts measured using a coordinate measuring machine. J Prosthodont. 2018;27:560–7.

    PubMed  Article  Google Scholar 

  72. 72.

    Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013;109:121–8.

    PubMed  Article  Google Scholar 

  73. 73.

    Pachêcho-Pereira C, De Luca Canto G, Major PW, Flores-Mir C. Variation of orthodontic treatment decision-making based on dental model type: a systematic review. Angle Orthod. 2015;85:501–9.

    Article  Google Scholar 

  74. 74.

    Cho SH, Schaefer O, Thompson GA, Guentsch A. Comparison of the accuracy and reproducibility of casts made by digital and conventional methods. J Prosthet Dent. 2015;113:310–5.

    PubMed  Article  Google Scholar 

  75. 75.

    De Luca Cant G, Pachêcho-Pereira C, Lagravere MO, Flores-Mir C, Major PW. Intra-arch dimensional measurement validity of laser-scanned digital dental models compared with the original plaster models: a systematic review. Orthod Craniofac Res. 2015;18:65–76.

    Article  Google Scholar 

  76. 76.

    Aragón ML, Pontes LF, Bichara LM, Flores-Mir C, Normando D. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur J Orthod. 2016;38:429–34.

    PubMed  Article  Google Scholar 

  77. 77.

    Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. Diagnostic accuracy and measurement sensitivity of digital models for orthodontic purposes: a systematic review. Am J Orthod. Dentofacial Orthop. 2016;149:161–70.

    PubMed  Article  Google Scholar 

  78. 78.

    Deckard C, Beaman J. Process and control issues in selective laser sintering. ASME Prod Eng Div. 1988;33:191–7.

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marta Revilla-León.

Ethics declarations

Conflict of interest

The authors do not have any conflict interest, financial or personal, in any of the materials described in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Revilla-León, M., Sadeghpour, M. & Özcan, M. An update on applications of 3D printing technologies used for processing polymers used in implant dentistry. Odontology 108, 331–338 (2020). https://doi.org/10.1007/s10266-019-00441-7

Download citation

Keywords

  • 3D printing
  • Additive manufacturing technologies
  • Guided surgery
  • Implant dentistry
  • Polymers