Skip to main content

Advertisement

Log in

Generation and histomorphometric evaluation of a novel fluvastatin-containing poly(lactic-co-glycolic acid) membrane for guided bone regeneration

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the effects of a poly(lactic-co-glycolic acid) (PLGA) membrane containing fluvastatin on bone regeneration at bone defects in rat calvaria and tibia for possible use as a guided bone regeneration (GBR) membrane. PLGA and fluvastatin-containing PLGA (PLGA–fluvastatin) membranes were prepared and mechanical properties were evaluated. Standardized bony defects were created in rat calvaria and the right tibia, and covered with a PLGA or PLGA–fluvastatin membrane. Bone regeneration was evaluated using image analysis based on histologic examination. At 4 and 8 weeks after membrane implantation, the PLGA–fluvastatin group displayed enhanced new bone formation around the edge of the defect compared with the PLGA membrane group in the calvarial model. Thick bone regeneration was observed in tibia-defect sites in the PLGA–fluvastatin membrane group. These results suggest that the PLGA-containing fluvastatin membrane prepared in this study may potentially be used as a GBR membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee SW, Kim SG. Membrane for the guided bone regeneration. Maxillofac Plast Reconstr Surg. 2014;36(6):239–46.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rakhmatia YD, Ayukawa Y, Furuhashi A, et al. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57:3–14.

    Article  PubMed  Google Scholar 

  3. Scantlebury TV. 1982–1992: a decade of technology development for guided tissue regeneration. J Periodontol. 1993;64:1129–37.

    Article  PubMed  Google Scholar 

  4. Dimitriou R, Mataliotakis GI, Calori GM, et al. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med. 2012;10:81.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu J, Kerns DG. Mechanisms of guided bone regeneration: a review. Open Dent J. 2014;8(Suppl 1-M3):56–65.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater. 2012;28:703–21.

    Article  PubMed  Google Scholar 

  7. Lu JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–41.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3:1377–97.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15:3640–59.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cho WJ, Kim JH, Oh SH, et al. Hydrophilized polycaprolactone nanofiber mesh-embedded poly(glycolic-co-lactic acid) membrane for effective guided bone regeneration. J Biomed Mater Res Part A 2008; 91:400–7.

    Google Scholar 

  11. Yonamine Y, Matsuyama T, Sonomura T, et al. Effectable application of vascular endothelial growth factor to critical sized rat calvaria defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:225–31.

    Article  PubMed  Google Scholar 

  12. Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and rodents by statins. Science. 1999;18:53–7.

    Google Scholar 

  13. Ayukawa Y, Okamura A, Koyano K. Simvastatin promotes osteogenesis around titanium implants. A histological and histometrical study in rats. Clin Oral Implant Res. 2004;15:346–50.

    Article  Google Scholar 

  14. Moriyama Y, Ayukawa Y, Ogino Y, et al. Local application of fluvastatin improves peri-implant bone quantity and mechanical properities: a rodent study. Acta Biomater. 2010;6:1610–18.

    Article  PubMed  Google Scholar 

  15. Jinno Y, Ayukawa Y, Ogino Y, et al. Vertical bone augmentation with fluvastatin in an injectable delivery system: a rat study. Clin Oral Implant Res. 2009;20:756–60.

    Article  Google Scholar 

  16. Masuzaki T, Ayukawa Y, Moriyama Y, et al. The effect of a single remote injection of statin-impregnated poly(lactic-co-glycolic acid) microspheres on osteogenesis around titanium implants in rat tibia. Biomater. 2010;31:3327–34.

    Article  Google Scholar 

  17. Yasunami N, Ayukawa Y, Furuhashi A, et al. Acceleration of hard and soft tissue healing in the oral cavity by a single transmucosal injection of fluvastatin-impregnated poly(lactic-co-glycolic acid) microspheres. An in vitro and rodent in vivo study. Biomed Mater. 2016;11:015001.

    Article  Google Scholar 

  18. Rakhmatia YD, Ayukawa Y, Furuhashi A, et al. Microcomputed tomographic and histomorphometric analyses of novel titanium mesh membranes for guided bone regeneration: a study in rat calvarial defect. Int J Oral Maxillofac Implant. 2014;29:826–35.

    Article  Google Scholar 

  19. Sousa BGB, Pedrotti G, Sponchiado AP, et al. Analysis of tensile strength of poly(lactic-co-glycolic acid) (PLGA) membranes used for guided tissue regeneration. RSBO. 2014;11(1):59–65.

    Google Scholar 

  20. Ueyama Y, Ishikawa K, Mano T, et al. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomater. 2002;23:2027–33.

    Article  Google Scholar 

  21. Nyan M, Sato D, Kihara H, et al. Effects of the combination with α-tricalcium phosphate and simvastatin on bone regeneration. Clin Oral Implant Res 2009; 20:280–87.

    Article  Google Scholar 

  22. Hong KS, Kim EC, Bang SH, et al. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J Biomed Mater Res Part A. 2010;94(4):1187–94.

    Google Scholar 

  23. Lee EJ, Shin DS, Kim HE, et al. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomater. 2009;30:743–50.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by KAKENHI (no. 15H06490) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuko Moriyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Moriyama, Y., Ayukawa, Y. et al. Generation and histomorphometric evaluation of a novel fluvastatin-containing poly(lactic-co-glycolic acid) membrane for guided bone regeneration. Odontology 107, 37–45 (2019). https://doi.org/10.1007/s10266-018-0376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-018-0376-z

Keywords

Navigation