Skip to main content
Log in

Contribution of thrips to seed production in Habenaria radiata, an orchid morphologically adapted to hawkmoths

  • Regular Paper – Ecology/Ecophysiology/Environmental Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

A Correction to this article was published on 06 June 2020

This article has been updated

Abstract

The very high floral diversity of Orchidaceae has often been attributed to the intricate relationships between orchids and their pollinators. In particular, the interaction between long-spurred orchids and hawkmoths has been well-studied. However, several recent studies suggest that pollination is driven by complex factors, including floral syndromes and local pollinator availability. Here, we investigated contributions of thrips to seed production in the presumably hawkmoth-pollinated long-spurred orchid Habenaria radiata, using pollination experiments and floral visitor observations. These experiments and observations showed that H. radiata is pollinated by both hawkmoths and thrips. Thrips intrude into the pollen sac, causing several massulae to be shed onto the stigma of the same flower, which is located just below the pollen sac. The fruit set and seed set of flowers enclosed in mesh bags (which allow thrips in) and in flowers enclosed together with thrips in paper bags, were much higher than in flowers enclosed in paper bags without thrips. This suggests that thrips partially contribute to fruit and seed production in this species. It provides evidence that thrips can contribute to seed production in a long-spurred orchid that is morphologically adapted to lepidopteran visitors. Unlike the compact pollinia of typical orchid species, those of H. radiata are mealy and friable, and thrips can therefore dislodge the pollen grains in small clumps. We suggest that secondary pollination by thrips may be more common than previously recognized in orchids with granular pollinia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 06 June 2020

    In the original publication of the article, Fig. 2(c) was erroneously identical with Fig. 2(a) and correct version is provided below.

References

  • Aguiar JMRBV, Pansarin LM, Ackerman JD, Pansarin ER (2012) Biotic versus abiotic pollination in Oeceoclades maculata (Lindl.) Lindl. (Orchidaceae). Plant Spec Biol 27:86–95

    Article  Google Scholar 

  • Amorim FW, Wyatt GE, Sazima M (2014) Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil. Naturwissenschaften 101:893–905

    Article  CAS  PubMed  Google Scholar 

  • Appanah S, Chan HT (1981) Thrips: the pollinators of some dipterocarps. Malays For 44:234–252

    Google Scholar 

  • Baker JD, Cruden RW (1991) Thrips-mediated self-pollination of two facultatively xenogamous wetland species. Am J Bot 78:959–963

    Article  Google Scholar 

  • Chase VC, Raven PH (1975) Evolutionary and ecological relationships between Aquilegia formosa and A. pubescens (Ranunculaceae), two perennial plants. Evolution 29:474–486

    Article  PubMed  Google Scholar 

  • Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494

    Article  PubMed  Google Scholar 

  • Danieli-Silva A, Varassin IG (2013) Breeding system and thrips (Thysanoptera) pollination in the endangered tree Ocotea porosa (Lauraceae): implications for conservation. Plant Spec Biol 28:31–40

    Article  Google Scholar 

  • Darwin C (1877) The various contrivances by which orchids are fertilised by insects. John Murray, London

    Book  Google Scholar 

  • de Medeiros BA, Núñez-Avellaneda LA, Hernandez AM, Farrell BD (2019) Flower visitors of the licuri palm (Syagrus coronata): brood pollinators coexist with a diverse community of antagonists and mutualists. Biol J Linn Soc 126:666–687

    Article  Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Dioscorides Press, Portland

    Google Scholar 

  • Fukuhara T, Tokumaru SI (2014) Inflorescence dimorphism, heterodichogamy and thrips pollination in Platycarya strobilacea (Juglandaceae). Ann Bot 113:467–476

    Article  PubMed  Google Scholar 

  • García-Fayos P, Goldarazena A (2008) The role of thrips in pollination of Arctostaphyllos uva-ursi. Int J Plant Sci 169:776–781

    Article  Google Scholar 

  • Guicking D, Fiala B, Kröger-Kilian T, Mohamed M, Weising K (2013) High gene flow in two thrips-pollinated South-East Asian pioneer trees: genetic diversity and population structure of Macaranga hypoleuca and M. beccariana (Euphorbiaceae). Bot J Linn Soc 173:606–621

    Article  Google Scholar 

  • Huang SQ, Fenster CB (2007) Absence of long-proboscid pollinators for long-corolla-tubed Himalayan Pedicularis species: implications for the evolution of corolla length. Int J Plant Sci 168:325–331

    Article  Google Scholar 

  • Ikeuchi Y, Suetsugu K, Sumikawa H (2015) Diurnal skipper Pelopidas mathias (Lepidoptera: Hesperiidae) pollinates Habenaria radiata (Orchidaceae). Entomol News 125:7–11

    Article  Google Scholar 

  • Inoue K (1983) Systematics of the genus Platanthera (Orchidaceae) in Japan and adjacent regions with special reference to pollination. J Fac Sci Univ Tokyo, Sect III 13:285–374

    Google Scholar 

  • Johnson S (1995) Observations of hawkmoth pollination in the South African orchid Disa cooperi. Nord J Bot 15:121–125

    Article  Google Scholar 

  • Kondo T, Nishimura S, Tani N, Ng KKS, Lee SL, Muhammad N, Okuda T, Tsumura Y, Isagi Y (2016) Complex pollination of a tropical Asian rainforest canopy tree by flower-feeding thrips and thrips-feeding predators. Am J Bot 103:1912–1920

    Article  PubMed  Google Scholar 

  • Kotilínek M, Těšitelová T, Jersáková J (2015) Biological flora of the British Isles: Neottia ovata. J Ecol 103:1354–1366

    Article  Google Scholar 

  • Linhart YB, Mendenhall JA (1977) Pollen dispersal by hawkmoths in a Lindenia rivalis Benth. population in Belize. Biotropica 9:143

    Article  Google Scholar 

  • Liu ZJ, Chen LJ, Liu KW, Li LQ, Rao WH, Zhang YT, Tang GD, Huang LQ (2013) Adding perches for cross-pollination ensures the reproduction of a self-incompatible orchid. PLoS ONE 8:e53695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo YB, Li ZY (1999) Pollination ecology of Chloranthus serratus (Thunb.) Roem. et Schult. and Ch. fortunei (A. Gray) Solms-Laub. (Chloranthaceae). Ann Bot 83:489–499

    Article  Google Scholar 

  • Matsui K, Ushimaru T, Fujita N (2001) Pollinator limitaton in a deceptive orchid, Pogonia japonica, on a floating peat mat. Plant Spec Biol 16:231–235

    Article  Google Scholar 

  • Meena NK, Nagrare VS, Medhi RP (2011) Thrips, Dichromothrips nakahari Mound (Thysanoptera: Thripidae) infesting the orchids in India—a new report. Ind J Hortic 68:587–588

    Google Scholar 

  • Micheneau C, Johnson SD, Fay MF (2009) Orchid pollination: from Darwin to the present day. Bot J Linn Soc 161:1–19

    Article  Google Scholar 

  • Miller RB (1981) Hawkmoths and the geographic patterns of floral variation in Aquilegia caerulea. Evolution 35:763–774

    Article  PubMed  Google Scholar 

  • Momose K, Nagamitsu T, Inoue T (1998) Thrips cross-pollination of Popowia pisocarpa (Annonaceae) in a lowland dipterocarp forest in Sarawak. Biotropica 30:444–448

    Article  Google Scholar 

  • Moog U, Fiala B, Federle W, Maschwitz U (2002) Thrips pollination of the dioecious ant plant Macaranga hullettii (Euphorbiaceae) in Southeast Asia. Am J Bot 89:50–59

    Article  PubMed  Google Scholar 

  • Mound LA, Terry I (2001) Thrips pollination of the central Australian cycad, Macrozamia macdonnellii (Cycadales). Int J Plant Sci 162:147–154

    Article  Google Scholar 

  • Murai T, Ishii T (1982) Simple rearing method for flower thrips (Thysanoptera; Thripidae) on pollen. Jap J Appl Entomol Zool 26:149–154

    Article  Google Scholar 

  • Nilsson LA (1981) The pollination ecology of Listera ovata (Orchidaceae). Nord J Bot 1:461–480

    Article  Google Scholar 

  • Nilsson LA, Johnsson L, Ralison L, Randrianjohany E (1987) Angraecoid orchids and hawkmoths in central Madagascar: specialized pollination systems and generalist foragers. Biotropica 19:310–318

    Article  Google Scholar 

  • Nunes CEP, Maruyama PK, Azevedo-Silva M, Sazima M (2018) Parasitoids turn herbivores into mutualists in a nursery system involving active pollination. Curr Biol 28(980–986):e3

    Google Scholar 

  • Ollerton J, Alarcón R, Waser NM, Price MV, Watts S, Cranmer L, Hingston A, Peter CI, Rotenberry J (2009) A global test of the pollination syndrome hypothesis. Ann Bot 103:1471–1480

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedron M, Buzatto CR, Singer RB, Batista JAN, Moser A (2012) Pollination biology of four sympatric species of Habenaria (Orchidaceae: Orchidinae) from southern Brazil. Bot J Linn Soc 170:141–156

    Article  Google Scholar 

  • Peter CI, Johnson SD (2009) Reproductive biology of Acrolophia cochlearis (Orchidaceae): estimating rates of cross-pollination in epidendroid orchids. Ann Bot 104:573–581

    Article  PubMed  Google Scholar 

  • Peter CI, Coombs G, Huchzermeyer CF, Venter N, Winkler AC, Hutton D, Papier LA, Dold AP, Johnson SD (2009) Confirmation of hawkmoth pollination in Habenaria epipactidea: leg placement of pollinaria and crepuscular scent emission. S Afr J Bot 75:744–750

    Article  Google Scholar 

  • Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S, Ashworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M (2014) A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 17:388–400

    Article  PubMed  Google Scholar 

  • Sakai S (2001) Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest. Am J Bot 88:1527–1534

    Article  CAS  PubMed  Google Scholar 

  • Sakai S (2002) A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J Plant Res 115:161–168

    Article  PubMed  Google Scholar 

  • Singer RB (2001) Pollination biology of Habenaria parviflora (Orchidaceae: Habenariinae) in southeastern Brazil. Darwiniana 39:201–207

    Google Scholar 

  • Singer R, Cocucci AA (1997) Eye attached Hemipollinaria in the hawkmoth and settling moth pollination of Habenaria (Orchidaceae): a study on functional morphology in 5 species from subtropical South America. Botanica Acta 110:328–337

    Article  Google Scholar 

  • Sletvold N, Trunschke J, Wimmergren C, Ågren J (2012) Separating selection by diurnal and nocturnal pollinators on floral display and spur length in Gymnadenia conopsea. Ecology 93:1880–1891

    Article  PubMed  Google Scholar 

  • Smithson A (2006) Pollinator limitation and inbreeding depression in orchid species with and without nectar rewards. New Phytol 169:419–430

    Article  PubMed  Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Annu Rev Ecol Syst 1:307–326

    Article  Google Scholar 

  • Suetsugu K, Tanaka K (2014) Diurnal butterfly pollination in the orchid Habenaria radiata. Entomol Sci 17:443–445

    Article  Google Scholar 

  • Suetsugu K, Tanaka K, Okuyama Y, Yukawa T (2015) Potential pollinator of Vanda falcata (Orchidaceae): Theretra (Lepidoptera: Sphingidae) hawkmoths are visitors of long spurred orchid. Eur J Entomol 112:393–397

    Article  Google Scholar 

  • Suetsugu K, Tetsu S, Hiraiwa MK, Tsutsumi T (2019a) Thrips as a supplementary pollinator in an orchid with granular pollinia: is this mutualism? Ecology 100:e02535

    Article  PubMed  Google Scholar 

  • Suetsugu K, Tetsu S, Hiraiwa MK, Tsutsumi T (2019b) Thrips partially contribute to pollination of an orchid with granular pollinia. Bull Ecol Soc Am 100:1–5

    Article  Google Scholar 

  • Tal O (2009) Acer pseudoplatanus (Sapindaceae): heterodichogamy and thrips pollination. Plant Syst Evol 278:211–221

    Article  Google Scholar 

  • Tałałaj I, Ostrowiecka B, Włostowska E, Rutkowska A, Brzosko E (2017) The ability of spontaneous autogamy in four orchid species: Cephalanthera rubra, Neottia ovata, Gymnadenia conopsea, and Platanthera bifolia. Acta Biol Crac Ser Bot 59:51–61

    Google Scholar 

  • Tao Z, Ren Z, Bernhardt P, Wang W, Liang H, Li H, Wang H (2018) Nocturnal hawkmoth and noctuid moth pollination of Habenaria limprichtii (Orchidaceae) in sub-alpine meadows of the Yulong Snow Mountain (Yunnan, China). Bot J Linn Soc 187:483–498

    Article  Google Scholar 

  • Terry I (2001) Thrips and weevils as dual, specialist pollinators of the Australian cycad Macrozamia communis (Zamiaceae). Int J Plant Sci 162:1293–1305

    Article  Google Scholar 

  • Thien LB (1980) Patterns of pollination in the primitive angiosperms. Biotropica 12:1–13

    Article  Google Scholar 

  • Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN, Pellmyr O (1992) Mutualism with pollinating seed parasites amid co-pollinators: constraints on specialization. Ecology 73:1780–1791

    Article  Google Scholar 

  • Tomino K (1980) Observation and cultivation of Habenaria radiata. Plant Nat 14:6–9

    Google Scholar 

  • Ullah MS, Lim UT (2015) Life history characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in constant and fluctuating temperatures. J Econ Entomol 108:1000–1009

    Article  PubMed  Google Scholar 

  • Williams GA, Adam P, Mound LA (2001) Thrips (Thysanoptera) pollination in Australian subtropical rainforests, with particular reference to pollination of Wilkiea huegeliana (Monimiaceae). J Nat Hist 35:1–21

    Article  Google Scholar 

  • Xie PW, Luo ZL, Zhang DX (2013) Syrphid fly pollination of Guihaiothamnus acaulis (Rubiaceae), a species with “butterfly” flowers. J Syst Evol 51:86–93

    Article  Google Scholar 

  • Zerega NJC, Mound LA, Weiblen GD (2004) Pollination in the New Guinea endemic Antiaropsis decipiens (Moraceae) is mediated by a new species of thrips, Thrips antiaropsidis sp. nov. (Thysanoptera: Thripidae). Int J Plant Sci 165:1017–1026

    Article  Google Scholar 

Download references

Acknowledgements

This study was based on the Koji Shigeta’s master thesis of Hiroshima University supervised by Drs. Nobukazu Nakagoshi and Yuji Isagi. The authors thank Drs. Nobukazu Nakagoshi and Yuji Isagi for their assistance and critical reading of the manuscript. The authors also thank Dr. T. Tsutsumi for his support in the pollination experiments, helpful advice, and thrips identification; T. Ikenoue for invaluable comments on moth observation, hawkmoth identification, and field assistance; J. Mabuhay for manuscript improvements; Dr. T. Kondo, Dr. T. Yahara, Dr. S. Kobayashi, Dr. T. Miyake, Dr. K. Inoue, Dr. K. Tanaka, Dr. H. Yumoto, Dr. K. Watanabe, Dr. K. Matsui, and Dr. Y. Suyama for helpful comments; and M. Chachin and D. Saito for field assistance. This work was financially supported by the JSPS KAKENHI Grant Number 17H05016 (to K.Suetsugu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koji Shigeta or Kenji Suetsugu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shigeta, K., Suetsugu, K. Contribution of thrips to seed production in Habenaria radiata, an orchid morphologically adapted to hawkmoths. J Plant Res 133, 499–506 (2020). https://doi.org/10.1007/s10265-020-01205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01205-z

Keywords

Navigation