Absorbance spectra of the hematochrome-like granules and eyespot of Euglena gracilis by scan-free absorbance spectral imaging A(x, y, λ) within the live cells

Abstract

Euglena gracilis has an organelle resembling hematochrome, with an appearance similar to the eyespot and the absorption band spectrally overlapped with that of the carotenoid. To discriminate the hematochrome-like granules and eyespot, scan-free, non-invasive, absorbance spectral imaging A(x, y, λ) microscopy of single live cells, where A(x, y, λ) means absorbance at a position (x, y) on a two-dimensional image at a specific wavelength λ was applied. This technique was demonstrated to be a powerful tool for basic research on intracellular structural analysis. By this method, characteristic absorption spectra specific to the hematochrome-like granule or eyespot were identified among a variety of spectra observed depending on the location inside the organelles. The hematochrome-like granule was dark orange and deep green in its outline and had a characteristic absorption peak at 620 nm as well as at 676 to 698 nm, suggesting that its origin is a component of chloroplast including chlorophyll a. Furthermore, the representative spectra of these organelles were derived by principal component analysis of the absorbance and its position in absorbance image, indicating that they can be distinguished from each other and other regions. It was also confirmed that even in areas where these organelles and chloroplasts overlap, one can distinguish them from each other. The present research clarified the absorption spectra of the eyespot with 1 × 1 µm spatial resolution and those unpublished of hematochrome-like granules of E. gracilis, and indicated that one can statistically distinguish these organelles by this method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Barsanti L, Coltelli P, Evangelista V et al (2009) In vivo absorption spectra of the two stable states of the Euglena photoreceptor photocycle. Photochem Photobiol 85:304–312. https://doi.org/10.1111/j.1751-1097.2008.00438.x

    CAS  Article  PubMed  Google Scholar 

  2. Benedetti PA, Bianchini G, Checcucci A et al (1976) Spectroscopic properties and related functions of the stigma measured in living cells of Euglena gracilis. Arch Microbiol 111:73–76

    CAS  Article  Google Scholar 

  3. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. https://doi.org/10.1126/science.1127344

    Article  Google Scholar 

  4. Britton G, Goodwin TW (eds) (2013) Carotenoid chemistry and biochemistry, 6th edn. Pergamon Press, Oxford

    Google Scholar 

  5. Buetow DE (1968) The biology of Euglena (Vol, 1). Academic Press, New York

    Google Scholar 

  6. Cramer M, Myers J (1952) Growth and photosynthetic characteristics of euglena gracilis. Arch Für Mikrobiol 17:384–402. https://doi.org/10.1007/BF00410835

    CAS  Article  Google Scholar 

  7. Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta Bioenerg 1020:1–24. https://doi.org/10.1016/0005-2728(90)90088-L

    CAS  Article  Google Scholar 

  8. Evangelista V, Evangelisti M, Barsanti L et al (2007) A polychromator-based microspectrophotometer. Int J Biol Sci 3:251–256

    CAS  Article  Google Scholar 

  9. Grung M, Kreimer G, Calenberg M et al (1994) Carotenoids in the eyespot apparatus of the flagellate green alga Spermatozopsis similis: adaptation to the retinal-based photoreceptor. Planta 193:38–43. https://doi.org/10.1007/BF00191604

    CAS  Article  Google Scholar 

  10. Hagen NA, Kudenov MW (2013) Review of snapshot spectral imaging technologies. Opt Eng 52:090901. https://doi.org/10.1117/1.OE.52.9.090901

    Article  Google Scholar 

  11. Hagen N, Kester RT, Gao L, Tkaczyk TS (2012) Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems. Opt Eng 51:. https://doi.org/10.1117/1.OE.51.11.111702

    Article  Google Scholar 

  12. Hashimoto H, Uragami C, Cogdell RJ (2016) Carotenoids and photosynthesis. Subcell Biochem 79:111–139. https://doi.org/10.1007/978-3-319-39126-7_4

    CAS  Article  PubMed  Google Scholar 

  13. Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151. https://doi.org/10.1016/S1360-1385(98)01200-X

    Article  Google Scholar 

  14. Iseki M (2007) Molecular mechanism of light sensing in Euglena. Jpn J Protozool 40:93–100

    Google Scholar 

  15. Isono T, Yamashita K, Momose D et al (2015) Scan-free absorbance spectral imaging A(x, y, λ) of single live algal cells for quantifying absorbance of cell suspensions. PLoS One 10:e0128002. https://doi.org/10.1371/journal.pone.0128002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Iwata O, Yamada K, Itou T et al (2017) Technology for developing super microalgal biofuels. Seibutsu Butsuri 57:235–239. https://doi.org/10.2142/biophys.57.235

    Article  Google Scholar 

  17. James TW, Crescitelli F, Loew ER, McFarland WN (1992) The eyespot of Euglena gracilis: a microspectrophotometric study. Vision Res 32:1583–1591

    CAS  Article  Google Scholar 

  18. Kester RT, Bedard N, Gao L, Tkaczyk TS (2011) Real-time snapshot hyperspectral imaging endoscope. J Biomed Opt 16:056005. https://doi.org/10.1117/1.3574756

    Article  PubMed  PubMed Central  Google Scholar 

  19. Koren LE (1967) High-yield media for photosynthesizing Euglena gracilis Z. J Protozool 14:17

    Google Scholar 

  20. Lee JY, Clarke ML, Tokumasu F et al (2012) Absorption-based hyperspectral imaging and analysis of single erythrocytes. IEEE J Sel Top Quantum Electron 18:1130–1139. https://doi.org/10.1109/JSTQE.2011.2164239

    CAS  Article  Google Scholar 

  21. Matsuoka H, Kosai Y, Saito M et al (2002) Single-cell viability assessment with a novel spectro-imaging system. J Biotechnol 94:299–308. https://doi.org/10.1016/S0168-1656(01)00431-X

    CAS  Article  PubMed  Google Scholar 

  22. Nakano Y (1980) Chloroplast replication in Euglena gracilis grown in cadmium-ion containing media. Agric Biol Chem 44:2733–2734. https://doi.org/10.1080/00021369.1980.10864396

    CAS  Article  Google Scholar 

  23. Ozasa K, Lee J, Song S, Maeda M (2014) Transient freezing behavior in photophobic responses of Euglena gracilis investigated in a microfluidic device. Plant Cell Physiol 55:1704–1712. https://doi.org/10.1093/pcp/pcu101

    CAS  Article  PubMed  Google Scholar 

  24. Paniagua-Michel J, Olmos-Soto J, Ruiz MA (2012) Pathways of carotenoid biosynthesis in bacteria and microalgae. In: Barredo J-L (ed) Microbial carotenoids from bacteria and microalgae: methods and protocols. Humana Press, Totowa, pp 1–12

    Google Scholar 

  25. Schmidt W, Galland P, Senger H, Furuya M (1990) Microspectrophotometry of Euglena gracilis: pterin- and flavin-like fluorescence in the paraflagellar body. Planta 182:375–381

    CAS  Article  Google Scholar 

  26. Schwartzbach SD, Shigeoka S (2017) Euglena: biochemistry, cell and molecular biology. Springer, Berlin

    Google Scholar 

  27. Strother GK, Wolken JJ (1961) In vivo absorption spectra of Euglena: ghloroplast and eyespot. J Protozool 8:261–265. https://doi.org/10.1111/j.1550-7408.1961.tb01213.x

    Article  Google Scholar 

  28. Wakisaka Y, Suzuki Y, Iwata O et al (2016) Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nat Microbiol 1:16124. https://doi.org/10.1038/nmicrobiol.2016.124

    CAS  Article  PubMed  Google Scholar 

  29. Wojcik K, Dobrucki JW (2008) Interaction of a DNA intercalator DRAQ5, and a minor groove binder SYTO17, with chromatin in live cells–influence on chromatin organization and histone-DNA interactions. Cytom Part J Int Soc Anal Cytol 73:555–562. https://doi.org/10.1002/cyto.a.20573

    CAS  Article  Google Scholar 

  30. Wolken JJ (1967) Euglena: an experimental organism for biochemical and biophysical studies, 2nd edn. Appleton-Century-Crofts, New York

    Google Scholar 

  31. Wolken JJ (1971) Invertebrate photoreceptors: a comparative analysis. Academic Press, New York

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Research Center for Green and Safety Sciences, Tokyo University of Science for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eiji Tokunaga.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamashita, K., Yagi, T., Isono, T. et al. Absorbance spectra of the hematochrome-like granules and eyespot of Euglena gracilis by scan-free absorbance spectral imaging A(x, y, λ) within the live cells. J Plant Res 132, 431–438 (2019). https://doi.org/10.1007/s10265-019-01102-0

Download citation

Keywords

  • Euglena
  • Eyespot
  • Hematochrome-like granule
  • Carotenoid
  • Chloroplast
  • Absorbance spectral imaging
  • Photosynthesis
  • Alga
  • Microscopy
  • Principal component analysis