Skip to main content
Log in

Regulation of asymmetric polar auxin transport by PsPIN1 in endodermal tissues of etiolated Pisum sativum epicotyls: focus on immunohistochemical analyses

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

This manuscript reports the production of specific polyclonal antibodies for PsPIN1, a putative auxin efflux carrier in Alaska pea (Pisum sativum L.) plants, and the cellular immunolocalization of PsPIN1. When pea seeds were set with the seed axis horizontal to the upper surface of a rockwool block, and allowed to germinate and grow for 3 days in the dark, the epicotyl grew upward. On the other hand, the application of 2,3,5-triiodobenzoic acid (TIBA) inhibited graviresponse. In the subapical epicotyl regions, PsPIN1 has been found to localize in the basal side of the plasma membrane of cells in endodermal tissues. Asymmetric PsPIN1 localization between the proximal and distal sides of the epicotyl was observed, the total amounts of PsPIN1 being more abundant in the proximal side. The asymmetric PsPIN1 distribution between the proximal and distal sides of the epicotyl was well correlated with unequal polar auxin transport as well as asymmetric accumulation of mRNA of PsPIN1 (Ueda et al. in Biol Sci Space 26:32–41, 2012; Ueda et al. in Plant Biol 16(suppl 1):43–49, 2014). In the proximal side of an apical hook, PsPIN1 localized in the basal side of the plasma membrane of cells in endodermal tissues, whereas in the distal side, the abundant distribution of PsPIN1 localized in the basal-lower (endodermal) side of the basal plasma membrane, suggesting possible lateral auxin movement from the distal side to the proximal side in this region. The application of TIBA significantly reduced the amount of PsPIN1 in the proximal side of epicotyls, but little in the distal side. These results suggest that unequal auxin transport in epicotyls during the early growth stage of etiolated pea seedlings is derived from asymmetric PsPIN1 localization in the apical hook and subapical region of epicotyls, and that asymmetric transport between the proximal and distal sides of epicotyls is required for the graviresponse of epicotyls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Motoshi Kamada or Akira Higashibata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamada, M., Miyamoto, K., Oka, M. et al. Regulation of asymmetric polar auxin transport by PsPIN1 in endodermal tissues of etiolated Pisum sativum epicotyls: focus on immunohistochemical analyses. J Plant Res 131, 681–692 (2018). https://doi.org/10.1007/s10265-018-1031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-018-1031-z

Keywords

Navigation