Advertisement

Journal of Plant Research

, Volume 131, Issue 1, pp 5–14 | Cite as

Emerging roles of cortical microtubule–membrane interactions

JPR Symposium Semi-in-vivo Developmental Biology

Abstract

Plant cortical microtubules have crucial roles in cell wall development. Cortical microtubules are tightly anchored to the plasma membrane in a highly ordered array, which directs the deposition of cellulose microfibrils by guiding the movement of the cellulose synthase complex. Cortical microtubules also interact with several endomembrane systems to regulate cell wall development and other cellular events. Recent studies have identified new factors that mediate interactions between cortical microtubules and endomembrane systems including the plasma membrane, endosome, exocytic vesicles, and endoplasmic reticulum. These studies revealed that cortical microtubule-membrane interactions are highly dynamic, with specialized roles in developmental and environmental signaling pathways. A recent reconstructive study identified a novel function of the cortical microtubule-plasma membrane interaction, which acts as a lateral fence that defines plasma membrane domains. This review summarizes recent advances in our understanding of the mechanisms and functions of cortical microtubule-membrane interactions.

Keywords

Rho-related GTPases from plants (ROP) IQ67-domain 13 (IQD13) Vesicle tethering (VETH) Microtubule depletion domain 1 (MIDD1) Cellulose synthase-microtubule uncoupling (CMU) Kinesin 

Abbreviations

CDZ

Cortical division zone

CSC

Cellulose synthase complex

cMT

Cortical microtubule

MAP

Microtubule-associated protein

MASC

Microtubule-associated cellulose synthase compartment

MF

Actin microfilament

MT

Microtubule

PA

Phosphatidic acid

PH

Pleckstrin homology

PLD

Phospholipase D

PM

Plasma membrane

ROP

Plant-specific Rho/Rac GTPase

SmaCC

Small CESA compartment

TGN

Trans-Golgi network

TTP

TON1/TRM/PP2A

Notes

Acknowledgements

This work was supported by grants from MEXT KAKENHI (grant no. 16H01247 to YO) and JSPS KAKENHI (Grant no. 16H06172 to YO).

References

  1. Abel S, Savchenko T, Levy M (2005) Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evol Biol 5:72PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akashi T, Shibaoka H (1991) Involvement of transmembrane proteins in the association of cortical microtubules with the plasma membrane in tobacco BY-2 cells. J Cell Sci 98:6Google Scholar
  3. Ambrose JC, Wasteneys GO (2008) CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19:4730–4737PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO (2007) The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19:2763–2775PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ambrose C, Allard JF, Cytrynbaum EN, Wasteneys GO (2011) A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat Commun 2:430PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ambrose C, Ruan Y, Gardiner J, Tamblyn LM, Catching A, Kirik V, Marc J, Overall R, Wasteneys GO (2013) CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell 24:649–659PubMedCrossRefGoogle Scholar
  7. Andreeva Z, Ho AY, Barthet MM, Potocký M, Bezvoda R, Žárský V, Marc J (2009) Phospholipase D family interactions with the cytoskeleton: isoform δ promotes plasma membrane anchoring of cortical microtubules. Func Plant Biol 36:13CrossRefGoogle Scholar
  8. Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C, Amiour N, Parcy F, Pastuglia M, Bouchez D (2008) Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20:2146–2159PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barton DA, Vantard M, Overall RL (2008) Analysis of cortical arrays from Tradescantia virginiana at high resolution reveals discrete microtubule subpopulations and demonstrates that confocal images of arrays can be misleading. Plant Cell 20:982–994PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser MT, Persson S (2012) POM-POM2/cellulose synthase interacting1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24:163–177PubMedPubMedCentralCrossRefGoogle Scholar
  11. Burstenbinder K, Savchenko T, Muller J, Adamson AW, Stamm G, Kwong R, Zipp BJ, Dinesh DC, Abel S (2013) Arabidopsis calmodulin-binding protein IQ67-domain 1 localizes to microtubules and interacts with kinesin light chain-related protein-1. J Biol Chem 288:1871–1882PubMedCrossRefGoogle Scholar
  12. Burstenbinder K, Mitra D, Quegwer J (2017a) Functions of IQD proteins as hubs in cellular calcium and auxin signaling: a toolbox for shape formation and tissue-specification in plants? Plant Signal Behav 12:e1331198PubMedPubMedCentralCrossRefGoogle Scholar
  13. Burstenbinder K, Moller B, Plotner R, Stamm G, Hause G, Mitra D, Abel S (2017b) The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiol 173:1692–1708PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buschmann H, Dols J, Kopischke S, Pena EJ, Andrade-Navarro MA, Heinlein M, Szymanski DB, Zachgo S, Doonan JH, Lloyd CW (2015) Arabidopsis KCBP interacts with AIR9 but stays in the cortical division zone throughout mitosis via its MyTH4-FERM domain. J Cell Sci 128:2033–2046PubMedCrossRefGoogle Scholar
  15. Cao P, Renna L, Stefano G, Brandizzi F (2016) SYP73 anchors the ER to the actin cytoskeleton for maintenance of ER integrity and streaming in Arabidopsis. Curr Biol 26:3245–3254PubMedCrossRefGoogle Scholar
  16. Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151PubMedCrossRefGoogle Scholar
  17. Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Hofte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cui Y, Li X, Chen Q, He X, Yang Q, Zhang A, Yu X, Chen H, Liu N, Xie Q, Yang W, Zuo J, Palme K, Li W (2010) BLOS1, a putative BLOC-1 subunit, interacts with SNX1 and modulates root growth in Arabidopsis. J Cell Sci 123:3727–3733PubMedCrossRefGoogle Scholar
  19. Cvrckova F (2013) Formins and membranes: anchoring cortical actin to the cell wall and beyond. Front Plant Sci 4:436PubMedPubMedCentralCrossRefGoogle Scholar
  20. Deeks MJ, Cvrckova F, Machesky LM, Mikitova V, Ketelaar T, Zarsky V, Davies B, Hussey PJ (2005) Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol 168:529–540PubMedCrossRefGoogle Scholar
  21. Deeks MJ, Fendrych M, Smertenko A, Bell KS, Oparka K, Cvrckova F, Zarsky V, Hussey PJ (2010) The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J Cell Sci 123:1209–1215PubMedCrossRefGoogle Scholar
  22. Deeks MJ, Calcutt JR, Ingle EK, Hawkins TJ, Chapman S, Richardson AC, Mentlak DA, Dixon MR, Cartwright F, Smertenko AP, Oparka K, Hussey PJ (2012) A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr Biol 22:1595–1600PubMedCrossRefGoogle Scholar
  23. Drevensek S, Goussot M, Duroc Y, Christodoulidou A, Steyaert S, Schaefer E, Duvernois E, Grandjean O, Vantard M, Bouchez D, Pastuglia M (2012) The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell 24:178–191PubMedPubMedCentralCrossRefGoogle Scholar
  24. Duan Q, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA 107:17821–17826PubMedPubMedCentralCrossRefGoogle Scholar
  25. Endler A, Kesten C, Schneider R, Zhang Y, Ivakov A, Froehlich A, Funke N, Persson S (2015) A mechanism for sustained cellulose synthesis during salt stress. Cell 162:1353–1364PubMedCrossRefGoogle Scholar
  26. Fendrych M, Synek L, Pecenkova T, Toupalova H, Cole R, Drdova E, Nebesarova J, Sedinova M, Hala M, Fowler JE, Zarsky V (2010) The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22:3053–3065PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fendrych M, Synek L, Pecenkova T, Drdova EJ, Sekeres J, de Rycke R, Nowack MK, Zarsky V (2013) Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol Biol Cell 24:510–520PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ganguly A, DeMott L, Dixit R (2017) The Arabidopsis kinesin-4, FRA1, requires a high level of processive motility to function correctly. J Cell Sci 130:1232–1238PubMedCrossRefGoogle Scholar
  30. Gardiner JC, Harper JD, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158PubMedPubMedCentralCrossRefGoogle Scholar
  31. Griffing LR, Gao HT, Sparkes I (2014) ER network dynamics are differentially controlled by myosins XI-K, XI-C, XI-E, XI-I, XI-1, and XI-2. Front Plant Sci 5:e218CrossRefGoogle Scholar
  32. Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin TI, Persson S, Somerville CR (2010) Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA 107:12866–12871PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–806PubMedCrossRefGoogle Scholar
  34. Hala M, Cole R, Synek L, Drdova E, Pecenkova T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler JE, Zarsky V (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20:1330–1345PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hamada T (2014) Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cell Mol Biol 312:1–52PubMedCrossRefGoogle Scholar
  36. Hamada T, Tominaga M, Fukaya T, Nakamura M, Nakano A, Watanabe Y, Hashimoto T, Baskin TI (2012) RNA processing bodies, peroxisomes, Golgi bodies, mitochondria, and endoplasmic reticulum tubule junctions frequently pause at cortical microtubules. Plant Cell Physiol 53:699–708PubMedCrossRefGoogle Scholar
  37. Hamada T, Tekeuchi NN, Kato T, Fujiwara M, Sonobe S, Fukao Y, Hashimoto T (2013) Purification and characterization of novel microtubule-associated proteins from Arabidopsis cell suspension cultures. Plant Physiol 163:1804–1816PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hamada T, Ueda H, Kawase T, Hara-Nishimura I (2014) Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis. Plant Physiol 166:1869–1876PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hardham AR, Gunning BES (1978) Structure of cortical microtubule arrays in plant cells. J Cell Biol 77:14–34PubMedCrossRefGoogle Scholar
  40. Hirano T, Matsuzawa T, Takegawa K, Sato MH (2011) Loss-of-function and gain-of-function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in Arabidopsis. Plant Physiol 155:797–807PubMedCrossRefGoogle Scholar
  41. Hirano T, Munnik T, Sato MH (2015) Phosphatidylinositol 3-phosphate 5-kinase, fab1/pikfyve kinase mediates endosome maturation to establish endosome-cortical microtubule interaction in Arabidopsis. Plant Physiol 169:1961–1974PubMedPubMedCentralGoogle Scholar
  42. Huang GQ, Li E, Ge FR, Li S, Wang Q, Zhang CQ, Zhang Y (2013) Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hair growth. New Phytol 200:1089–1101PubMedCrossRefGoogle Scholar
  43. Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443:106–109PubMedCrossRefGoogle Scholar
  44. Jiang Y, Wu K, Lin F, Qu Y, Liu X, Zhang Q (2014) Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta 239:565–575PubMedCrossRefGoogle Scholar
  45. Jonsson E, Yamada M, Vale RD, Goshima G (2015) Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. Nature Plants 1:15087PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kirik V, Herrmann U, Parupalli C, Sedbrook JC, Ehrhardt DW, Hulskamp M (2007) CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. J Cell Sci 120:4416–4425PubMedCrossRefGoogle Scholar
  47. Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J (2008) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci USA 105:17812–17817PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kong Z, Ioki M, Braybrook S, Li S, Ye ZH, Julie Lee YR, Hotta T, Chang A, Tian J, Wang G, Liu B (2015) Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol Plant 8:1011–1023PubMedCrossRefGoogle Scholar
  49. Lancelle SA, Callaham DA, Hepler PK (1986) A method for rapid freeze fixation of plant cells. Protoplasma 131:153–165CrossRefGoogle Scholar
  50. Ledbetter MC, Porter KR (1963) A “Microtubule” in plant cell fine structure. J Cell Biol 19:239–250PubMedPubMedCentralCrossRefGoogle Scholar
  51. Li S, Lei L, Somerville CR, Gu Y (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA 109:185–190PubMedCrossRefGoogle Scholar
  52. Li S, Chen M, Yu D, Ren S, Sun S, Liu L, Ketelaar T, Emons AM, Liu CM (2013) EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. Plant Cell 25:1774–1786PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lin D, Cao L, Zhou Z, Zhu L, Ehrhardt D, Yang Z, Fu Y (2013) Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Curr Biol 23:290–297PubMedCrossRefGoogle Scholar
  54. Lipka E, Gadeyne A, Stockle D, Zimmermann S, De Jaeger G, Ehrhardt DW, Kirik V, Van Damme D, Muller S (2014) The phragmoplast-orienting kinesin-12 class proteins translate the positional information of the preprophase band to establish the cortical division zone in Arabidopsis thaliana. Plant Cell 26:2617–2632PubMedPubMedCentralCrossRefGoogle Scholar
  55. Liu Z, Schneider R, Kesten C, Zhang Y, Somssich M, Fernie AR, Persson S (2016) Cellulose-microtubule uncoupling proteins prevent lateral displacement of microtubules during cellulose synthesis in Arabidopsis. Dev Cell 38:305–315PubMedCrossRefGoogle Scholar
  56. Martiniere A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SE, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J (2012) Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci USA 109:12805–12810PubMedPubMedCentralCrossRefGoogle Scholar
  57. McFarlane HE, Doring A, Persson S (2014) The cell biology of cellulose synthesis. Annu Rev Plant Biol 65:69–94PubMedCrossRefGoogle Scholar
  58. Mei Y, Gao HB, Yuan M, Xue HW (2012) The Arabidopsis ARCP protein, CSI1, which is required for microtubule stability, is necessary for root and anther development. Plant Cell 24:1066–1080PubMedPubMedCentralCrossRefGoogle Scholar
  59. Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186PubMedCrossRefGoogle Scholar
  60. Muller S, Jurgens G (2016) Plant cytokinesis-No ring, no constriction but centrifugal construction of the partitioning membrane. Semin Cell Dev Biol 53:10–18PubMedCrossRefGoogle Scholar
  61. Muller S, Han S, Smith LG (2006) Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr Biol 16:888–894PubMedCrossRefGoogle Scholar
  62. Oda Y, Fukuda H (2012) Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337:1333–1336PubMedCrossRefGoogle Scholar
  63. Oda Y, Fukuda H (2013) Rho of plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. Plant Cell 25:4439–4450PubMedPubMedCentralCrossRefGoogle Scholar
  64. Oda Y, Iida Y, Kondo Y, Fukuda H (2010) Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein. Curr Biol 20:1197–1202PubMedCrossRefGoogle Scholar
  65. Oda Y, Iida Y, Nagashima Y, Sugiyama Y, Fukuda H (2015) Novel coiled-coil proteins regulate exocyst association with cortical microtubules in xylem cells via the conserved oligomeric golgi-complex 2 protein. Plant Cell Physiol 56:277–286PubMedCrossRefGoogle Scholar
  66. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495PubMedCrossRefGoogle Scholar
  67. Pena EJ, Heinlein M (2013) Cortical microtubule-associated ER sites: organization centers of cell polarity and communication. Curr Opin Plant Biol 16:764–773PubMedCrossRefGoogle Scholar
  68. Pietra S, Gustavsson A, Kiefer C, Kalmbach L, Horstedt P, Ikeda Y, Stepanova AN, Alonso JM, Grebe M (2013) Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nature Commun 4:2779CrossRefGoogle Scholar
  69. Pietra S, Lang P, Grebe M (2015) SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana. Physiol Plant 153:440–453PubMedCrossRefGoogle Scholar
  70. Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerstrom M, Andersson MX (2013) Arabidopsis phospholipase ddelta is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiol 163:896–906PubMedPubMedCentralCrossRefGoogle Scholar
  71. Sampathkumar A, Gutierrez R, McFarlane H, Bringmann M, Lindeboom J, Emons AM, Samuels L, Ketelaar T, Ehrhardt D, Persson S (2013) Patterning and life-time of plasma membrane localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162:675–688PubMedPubMedCentralCrossRefGoogle Scholar
  72. Schaefer E, Belcram K, Uyttewaal M, Duroc Y, Goussot M, Legland D, Laruelle E, de Tauzia-Moreau ML, Pastuglia M, Bouchez D (2017) The preprophase band of microtubules controls the robustness of division orientation in plants. Science 356:186–189PubMedCrossRefGoogle Scholar
  73. Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300:1715–1718PubMedCrossRefGoogle Scholar
  74. Sparkes I, Runions J, Hawes C, Griffing L (2009) Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell 21:3937–3949PubMedPubMedCentralCrossRefGoogle Scholar
  75. Spinner L, Gadeyne A, Belcram K, Goussot M, Moison M, Duroc Y, Eeckhout D, De Winne N, Schaefer E, Van De Slijke E, Persiau G, Witters E, Gevaert K, De Jaeger G, Bouchez D, Van Damme D, Pastuglia M (2013) A protein phosphatase 2A complex spatially controls plant cell division. Nature Commun 4:1863CrossRefGoogle Scholar
  76. Stockle D, Herrmann A, Lipka E, Lauster T, Gavidia R, Zimmermann S, Muller S (2016) Putative RopGAPs impact division plane selection and interact with kinesin-12 POK1. Nature Plants 2:16120PubMedCrossRefGoogle Scholar
  77. Sugiyama Y, Wakazaki M, Toyooka K, Fukuda H, Oda Y (2017) A novel plasma membrane-anchored protein regulates xylem cell-wall deposition through microtubule-dependent lateral inhibition of Rho GTPase domains. Curr Biol 27:2522–2528PubMedCrossRefGoogle Scholar
  78. Synek L, Schlager N, Elias M, Quentin M, Hauser MT, Zarsky V (2006) AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J 48:54–72PubMedPubMedCentralCrossRefGoogle Scholar
  79. Tian J, Han L, Feng Z, Wang G, Liu W, Ma Y, Yu Y, Kong Z (2015) Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife 4:e09351PubMedCentralCrossRefGoogle Scholar
  80. Tu B, Hu L, Chen W, Li T, Hu B, Zheng L, Lv Z, You S, Wang Y, Ma B, Chen X, Qin P, Li S (2015) Disruption of OsEXO70A1 causes irregular vascular bundles and perturbs mineral nutrient assimilation in Rice. Sci Rep 5:18609PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T, Hasezawa S, Dolja VV, Hara-Nishimura I (2010) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci USA 107:6894–6899PubMedPubMedCentralCrossRefGoogle Scholar
  82. Vukasinovic N, Zarsky V (2016) Tethering complexes in the Arabidopsis endomembrane system. Front Cell Dev Biol 4:46PubMedPubMedCentralCrossRefGoogle Scholar
  83. Vukasinovic N, Oda Y, Pejchar P, Synek L, Pecenkova T, Rawat A, Sekeres J, Potocky M, Zarsky V (2017) Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytol 213:1052–1067PubMedCrossRefGoogle Scholar
  84. Walker KL, Muller S, Moss D, Ehrhardt DW, Smith LG (2007) Arabidopsis TANGLED identifies the division plane throughout mitosis and cytokinesis. Curr Biol 17:1827–1836PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wang P, Hussey PJ (2017) NETWORKED 3B: a novel protein in the actin cytoskeleton-endoplasmic reticulum interaction. J Exp Bot 68:1441–1450PubMedPubMedCentralCrossRefGoogle Scholar
  86. Wang C, Wang X (2001) A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol 127:1102–1112PubMedPubMedCentralCrossRefGoogle Scholar
  87. Wang P, Hawkins TJ, Richardson C, Cummins I, Deeks MJ, Sparkes I, Hawes C, Hussey PJ (2014) The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr Biol 24:1397–1405PubMedCrossRefGoogle Scholar
  88. Wang P, Richardson C, Hawkins TJ, Sparkes I, Hawes C, Hussey PJ (2016) Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol 210:1311–1326PubMedCrossRefGoogle Scholar
  89. Wasteneys GO, Ambrose JC (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol 19:62–71PubMedCrossRefGoogle Scholar
  90. Watanabe Y, Meents MJ, McDonnell LM, Barkwill S, Sampathkumar A, Cartwright HN, Demura T, Ehrhardt DW, Samuels AL, Mansfield SD (2015) Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science 350:198–203PubMedCrossRefGoogle Scholar
  91. Wightman R, Marshall R, Turner SR (2009) A cellulose synthase-containing compartment moves rapidly beneath sites of secondary wall synthesis. Plant Cell Physiol 50:584–594PubMedCrossRefGoogle Scholar
  92. Xu XM, Zhao Q, Rodrigo-Peiris T, Brkljacic J, He CS, Muller S, Meier I (2008) RanGAP1 is a continuous marker of the Arabidopsis cell division plane. Proc Natl Acad Sci USA 105:18637–18642PubMedPubMedCentralCrossRefGoogle Scholar
  93. Yalovsky S (2015) Protein lipid modifications and the regulation of ROP GTPase function. J Exp Bot 66:1617–1624PubMedCrossRefGoogle Scholar
  94. Yamada M, Tanaka-Takiguchi Y, Hayashi M, Nishina M, Goshima G (2017) Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells. J Cell Biol 216:1705–1714PubMedPubMedCentralCrossRefGoogle Scholar
  95. Yang Z, Lavagi I (2012) Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking. Curr Opin Plant Biol 15:601–607PubMedPubMedCentralCrossRefGoogle Scholar
  96. Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773PubMedCrossRefGoogle Scholar
  97. Zhang M, Zhang B, Qian Q, Yu Y, Li R, Zhang J, Liu X, Zeng D, Li J, Zhou Y (2010) Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J 63:312–328PubMedPubMedCentralCrossRefGoogle Scholar
  98. Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M, Zhang W (2012) Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24:4555–4576PubMedPubMedCentralCrossRefGoogle Scholar
  99. Zhang Y, Nikolovski N, Sorieul M, Vellosillo T, McFarlane HE, Dupree R, Kesten C, Schneider R, Driemeier C, Lathe R, Lampugnani E, Yu X, Ivakov A, Doblin MS, Mortimer JC, Brown SP, Persson S, Dupree P (2016) Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nature Commun 7:11656CrossRefGoogle Scholar
  100. Zhang Q, Song P, Qu Y, Wang P, Jia Q, Guo L, Zhang C, Mao T, Yuan M, Wang X, Zhang W (2017) Phospholipase D delta negatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis. Plant Cell Env 40:2220–2235CrossRefGoogle Scholar
  101. Zhong RQ, Burk DH, Morrison WH, Ye ZH (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117PubMedPubMedCentralCrossRefGoogle Scholar
  102. Zhu CM, Dixit R (2011) Single molecule analysis of the Arabidopsis FRA1 kinesin shows that it is a functional motor protein with unusually high processivity. Mol Plant 4:879–885PubMedCrossRefGoogle Scholar
  103. Zhu C, Ganguly A, Baskin TI, McClosky DD, Anderson CT, Foster C, Meunier KA, Okamoto R, Berg H, Dixit R (2015) The fragile Fiber1 kinesin contributes to cortical microtubule-mediated trafficking of cell wall components. Plant Physiol 167:780–792PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Center for Frontier ResearchNational Institute of GeneticsMishimaJapan
  2. 2.Department of GeneticsSOKENDAI (The Graduate University for Advanced Studies)MishimaJapan

Personalised recommendations