Skip to main content
Log in

Diversity and evolution of leaf anatomical characters in Taxaceae s.l.—fluorescence microscopy reveals new delimitating characters

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Taxaceae s.l. comprise six genera (including Cephalotaxus) and about 35 species; The present study aims to give new insights into the evolution of this family, especially into the phylogenetic position of Cephalotaxus. Moreover, only little is known about comparative leaf anatomy of this family and this study aims to expose and interpret the diversity and evolution of leaf anatomical characters and to assess their applicability to identify taxa at the generic and species level. A detailed phylogeny was reconstructed, using both maximum likelihood and Bayesian inference, with a combined dataset of four molecular markers from the plastid and nuclear genomes. Leaf sections from 132 specimens, representing 32 species and four varieties (fresh and herbarium material) were inspected, using fluorescence microscopy. Ancestral characters were reconstructed using Mesquite. The phylogenetic analyses provided full support for Cephalotaxus as sister group to Taxaceae s.str. Within the latter, two monophyletic tribes Taxeae (comprising Austrotaxus, Pseudotaxus, and Taxus) and Torreyeae (comprising Amentotaxus and Torreya) were fully supported. Fluorescence microscopy was shown to be very useful for identifying leaf tissues and their constitution. We were able to show that particularly sclerified tissues have highest potential for the discrimination of both freshly collected samples and rehydrated herbarium specimens at the generic and species level. A correlation between the presence of different sclereid types could be shown and sclereids were hypothesized to pose a primitive trait in the evolution of Taxaceae s.l. New identification keys were generated on the basis of leaf anatomical characters. The microscopic method presented here is applicable for further studies within gymnosperms and probably in angiosperms, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayensu ES (1967) Aerosol ot solution—an effective softener of herbarium specimens for anatomical study. Biotech Histochem 42:155–156. doi:10.3109/10520296709115000

    CAS  Google Scholar 

  • Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898. doi:10.1104/pp.107.101352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, Feild TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37:488. doi:10.1071/FP10010

    Article  Google Scholar 

  • Buchholz JT, Gray NE (1948) Taxonomic revision of Podocarpus. I. The sections of the genus and their subdivisions with special reference to leaf anatomy. J Arnold Arbor 29:49–63

    Google Scholar 

  • Burrows GE, Bullock S (1999) Leaf anatomy of wollemi pine (Wollemia nobilis, Araucariaceae). Aust J Bot 47:795. doi:10.1071/BT98019

    Article  Google Scholar 

  • Chamberlain CJ (1935) Gymnosperms, structure and evolution. The University of Chicago Press, Chicago

    Google Scholar 

  • Chaw S, Long H, Wang B, Zharkikh A, Li W (1993) The phylogenetic position of Taxaceae based on 18 S rRNA sequences. J Mol Evol 37:624–630

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Nicolson RG, Tripp KE, Chaw S (2000) Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS Region. Mol Phyl Evol 14:353–365. doi:10.1006/mpev.1999.0710

    Article  CAS  Google Scholar 

  • Christenhusz M, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW (2011) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19:55–70

    Article  Google Scholar 

  • Collins D, Mill RR, Möller M (2003) Species separation of Taxus baccata, T. canadensis. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data. Am J Bot 90:175–182. doi:10.3732/ajb.90.2.175

    Article  CAS  PubMed  Google Scholar 

  • Cope E (1998) Taxaceae: The genera and cultivated species. Bot Rev 64:291–322

    Article  Google Scholar 

  • Dörken VM, Nimsch H (2014) Morpho-anatomical investigations of cones and pollen in Cathaya argyrophylla Chung & Kuang (Pinaceae, Coniferales) under systematical and evolutional aspects. Feddes Rep 125:25–38. doi:10.1002/fedr.201400035

    Article  Google Scholar 

  • Dörken VM, Zhang Z, Mundry I, Stützel T (2011) Morphology and anatomy of male cones of Pseudotaxus chienii (Cheng WC) Cheng WC (Taxaceae). Flora 206:444–450. doi:10.1016/j.flora.2010.08.006

    Article  Google Scholar 

  • Eckenwalder JE (2009) Conifers of the world: the complete reference. 1st edn. Timber Press, Portland

    Google Scholar 

  • Farjon A (2001) World checklist and bibliography of conifers, 2nd edn. Royal Botanic Gardens, Kew

    Google Scholar 

  • Farjon A (2010) A handbook of the World’s Conifers. BRILL, Leiden

    Book  Google Scholar 

  • Farjon A, Filer D (2013) An atlas of the world’s conifers: an analysis of their distribution, biogeography, diversity and conservation status. BRILL, Leiden

    Book  Google Scholar 

  • Ferguson DK (1985) A new species of Amentotaxus (Taxaceae) from Northeastern India. Kew Bull 40:115. doi:10.2307/4108483

    Article  Google Scholar 

  • Florin R (1931) Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. In: I. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. 10, vol I. K Svenska Vetensk Akad Handl, Stockholm

  • Florin R (1948a) On Nothotaxus, a new species of the Taxaceae, from Eastern China. Acta Horti Bergiani 14:385–395

    Google Scholar 

  • Florin R (1948b) On the morphology and relationships on the Taxaceae. Bot Gaz 110:31–39

    Article  Google Scholar 

  • Florin R (1958) On Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Bergiani 17:257–402

    Google Scholar 

  • Fu L, Li N, Mill RR (1999a) Cephalotaxaceae Fl China 4:85–88

    Google Scholar 

  • Fu L, Li N, Mill RR (1999b) Taxaceae Fl China 4:89–96

    Google Scholar 

  • Gerlach D (1977) Botanische Mikrotechnik: Eine Einführung, 2., überarb. u. erw. Aufl. Thieme, Stuttgart

  • Ghimire B, Lee C, Heo K (2014) Leaf anatomy and its implications for phylogenetic relationships in Taxaceae s. l. J Plant Res 127:373–388. doi:10.1007/s10265-014-0625-3

    Article  PubMed  Google Scholar 

  • Gosling PG, McCartan SA, Ives LM, Cunningham VJ, Squirrell J, Thomas P (2008) Preliminary observations on fruit handling, seed germination and chloroplast inheritance of an Amentotaxus hybrid arising at the Royal Botanic Garden Edinburgh from A. argotaenia (F) x A. formosana (M). Sibbaldia 6:101–115

    Google Scholar 

  • Hamidipour A, Radjabian T, Charlet DA, Zarrei M (2011) Leaf anatomical investigation of Cupressaceae and Taxaceae in Iran. Wulfenia 18:95–111

    Google Scholar 

  • Hao DC, Xiao PG, Huang B, Ge GB, Yang L (2008) Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Syst Evol 276:89–104. doi:10.1007/s00606-008-0069-0

    Article  CAS  Google Scholar 

  • Hart JA (1987) A cladistic-analysis of conifers - preliminary-results. J Arnold Arbor 68:269–307

    Google Scholar 

  • Hu Y, Wang H, Wang F (1992) Leaf anatomy of Austrotaxus in relation to its systematic position. Cathaya 4:69–77

    Google Scholar 

  • Janchen E (1949) Das System der Koniferen. Oesterr Akad Wiss Math-Naturwiss. Kl Sitzungsber Abt 1 Biol 158:155–262

    Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acid Res 30:3059–3066. doi:10.1093/nar/gkf436

    Article  CAS  Google Scholar 

  • Kausik S (1975) The leaf structure in Podocarpus brevifolia (Stapf.) Foxw. Proc Ind Acad Sci B 81:197–206

    Google Scholar 

  • Kausik S, Bhattacharya S (1977) Comparative foliar anatomy of selected gymnosperms: leaf structure in relation to leaf form in Coniferales and Taxales. Phytomorphology 27:146–160

    Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Knopf P, Nimsch H, Stützel T (2007) Dacrydium × suprinii, sp. nova – a natural hybrid of Dacrydium araucarioides × D. guillauminii. Feddes Rep 118:51–59. doi:10.1002/fedr.200711126

    Article  Google Scholar 

  • Knopf P, Schulz C, Little DP, Stützel T, Stevenson DW (2012) Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28:271–299. doi:10.1111/j.1096-0031.2011.00381.x

    Article  Google Scholar 

  • Lang X, Su J, Zhang Z, Lu S (2013) A taxonomic revision of the genus Cephalotaxus (Taxaceae). Phytotaxa 84. doi:10.11646/phytotaxa.84.1.1

  • Leslie AB (2012) Branching habit and the allocation of reproductive resources in conifers. Ann Bot 110:915–921. doi:10.1093/aob/mcs150

    Article  PubMed  PubMed Central  Google Scholar 

  • Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci USA 109:16217–16221. doi:10.1073/pnas.1213621109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H (1952) The genus Amentotaxus. J Arnold Arbor 33:192–198

    Google Scholar 

  • Little DP, Knopf P, Schulz C, Hajibabaei M (2013) DNA barcode identification of Podocarpaceae—the second largest conifer family. PLoS One 8:e81008. doi:10.1371/journal.pone.0081008

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Möller M, Gao LM, Zhang D, Li D (2011) DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol Ecol Resour 11:89–100. doi:10.1111/j.1755-0998.2010.02907.x

    Article  CAS  PubMed  Google Scholar 

  • Locosselli GM, Ceccantini G (2012) Plasticity of stomatal distribution pattern and stem tracheid dimensions in Podocarpus lambertii: an ecological study. Ann Bot 110:1057–1066. doi:10.1093/aob/mcs179

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Ran J, Guo D, Yang Z, Wang X, Buerki S (2014) Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS One 9:e107679. doi:10.1371/journal.pone.0107679

    Article  PubMed  PubMed Central  Google Scholar 

  • Maddison W, Maddison D (2016) Mesquite: a modular system for evolutionary analysis. Version 3.03. https://mesquiteproject.wikispaces.com. Accessed 24 Oct 2016

  • Möller M, Gao LM, Mill RR, Li D, Hollingsworth ML, Gibby M (2007) Morphometric analysis of the Taxus wallichiana complex (Taxaceae) based on herbarium material. Bot J Linn Soc 155:307–335. doi:10.1111/j.1095-8339.2007.00697.x

    Article  Google Scholar 

  • Möller M, Gao LM, Mill RR, Liu J, Zhang D, Poudel RC, Li D (2013) A multidisciplinary approach reveals hidden taxonomic diversity in the morphologically challenging Taxus wallichiana-complex. Taxon 62:1161–1177. doi:10.12705/626.9

    Article  Google Scholar 

  • Mundry I, Mundry M (2001) Male cones in Taxaceae s. l.—an example of Wettstein’s pseudanthium concept. Plant Biol 3:405–416

    Article  Google Scholar 

  • Napp-Zinn K (1966) Anatomie des Blattes: I. Blattanatomie der Gymnospermen. Gebrüder Bornträger, Berlin-Nikolassee

    Google Scholar 

  • Orr MY (1944) The Leaf Anatomy of Podocarpus Trans Bot Soc Edinburgh 34:1–54. doi:10.1080/13594864409441551

    Article  Google Scholar 

  • Page CN (1990) Taxonomic concepts in conifers and ginkgoids. In: Kramer KU, Green PS (eds) Pteridophytes and gymnosperms. Springer, Berlin Heidelberg

    Google Scholar 

  • Peterson RL, Hersey RE, Brisson JD (1978) Embedding softened herbarium material in Spurr’s resin for histological studies. Biotech Histochem 53:1–9. doi:10.3109/10520297809111436

    CAS  Google Scholar 

  • Pilger R (ed) (1903) Taxaceae. Das Pflanzenreich, IV.5. W. Engelmann, Leipzig and Berlin

  • Pilger R (1916) Die Taxales. Mitt Dtsch Dendrol Ges 25:1–30

    Google Scholar 

  • Posada D, Buckley T (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808. doi:10.1080/10635150490522304

    Article  PubMed  Google Scholar 

  • Poudel RC, Möller M, Gao LM, Ahrends A, Baral SR, Liu J, Thomas P, Li D, Joly S (2012) Using morphological, molecular and climatic data to delimitate yews along the Hindu Kush-Himalaya and adjacent regions. PLoS One 7:e46873. doi:10.1371/journal.pone.0046873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price RA (1990) The genera of Taxaceae in the southeastern United States. J Arnold Arbor 71:69–91

    Article  Google Scholar 

  • Quinn CJ, Price RA, Gadek PA (2002) Familial concepts and relationships in the conifer based on rbcL and matK sequence comparisons. Kew Bull 57:513. doi:10.2307/4110984

    Article  Google Scholar 

  • Rambaut A (2012) FigTree v1.4.0: tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree. Accessed 26 Oct 2016

  • Rao A (1965) Studies on foliar sclereids in gymnosperms. Proc Ind Acad Sci B 61:196–203

    Google Scholar 

  • Rao A (1977) Morphogenesis of sclereids in Gnetum gnemon. Ann Bot 39:973–974

    Article  Google Scholar 

  • Rao A, Bhupal OP (1972) Topology of sclereids. Bot Surv India 14:41–55

    Google Scholar 

  • Rao A, Malaviya M (1963) The peculiar sclereids of Cephalotaxus drupacea Sieb. et Zucc. Proc Ind Acad Sci B 59B:228–236

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Sahni B (1920) On certain archaic features in the seed of Taxus baccata, with remarks on the antiquity of the Taxinae. Ann Bot 34:117–132

    Article  Google Scholar 

  • Saxton WT (1930) Notes on conifers: IV. Some points in the leaf anatomy of Fokienia hodginsii Henry and Thomas and Libocedrus macrolepis B. and H. Ann Bot 44:167–171

    Article  Google Scholar 

  • Schulz C, Stützel T (2006) Variability of male cones in Chamaecyparis as an example for Cupressaceae male cones. Feddes Rep 117:146–157. doi:10.1002/fedr.200511085

    Article  Google Scholar 

  • Schulz C, Jagel A, Stützel T (2003) Cone morphology in Juniperus in the light of cone evolution in Cupressaceae s.l. Flora 198:161–177. doi:10.1078/0367-2530-00088

    Article  Google Scholar 

  • Schulz C, Knopf P, Stützel T (2005) Identification key to the Cypress family (Cupressaceae). Feddes Rep 116:96–146. doi:10.1002/fedr.200411062

    Article  Google Scholar 

  • Schulz C, Klaus KV, Knopf P, Mundry M, Dörken VM, Stützel T (2014) Male cone evolution in conifers: not all that simple. Am J Plant Sci 5:2842–2857. doi:10.4236/ajps.2014.518300

    Article  Google Scholar 

  • Spjut R (2007) Taxonomy and nomenclature of Taxus (Taxaceae). J Bot Res Inst Texas 1:203–289

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanoviac S, Muriel J, Deutsch J, Broutin J, Masselot M (1998) Phylogenetic relationships of conifers inferred from Partial 28 S rRNA gene sequences. Am J Bot 85:688–697

    Article  CAS  PubMed  Google Scholar 

  • Stützel T, Röwekamp I (1999) Female reproductive structures in Taxales. Flora 194:145–157

    Article  Google Scholar 

  • Swafford DL (2003) PAUP∗: Phylogenetic analysis using parsimony (∗and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts. http://paup.sc.fsu.edu/index.html. Accessed 24 Oct 2016

  • Tripp KE (1995) Cephalotaxus: the plum yews. Arnoldia 55:25–39

    Google Scholar 

  • Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180. doi:10.1111/j.1096-0031.2010.00329.x

    Article  Google Scholar 

  • Wang T, Su Y, Zheng B, Li X, Zeng Q, Qu L, Gu H (2003) Cladistic analysis of chloroplast rbcL gene and trnL-trnF intergenic spacer sequences in Taxaceae and related taxa. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1, part A: Phanerogams. Scientific Publications, Enfield, pp 103–116

    Google Scholar 

  • Wilson P, Buonopane M, Allison TD (1996) Reproductive biology of the monoecious clonal shrub Taxus canadensis. Bull Torrey Bot Club 123:7. doi:10.2307/2996301

    Article  Google Scholar 

  • Worsdell WC (1897) VIII. On transfusion-tissue: its origin and function in the leaves of Gymnospermous Plants. // VIII. On “Transfusion-tissue”. Trans Linn Soc London Bot 5:301–319. doi:10.1111/j.1095-8339.1897.tb00205.x

    Google Scholar 

  • Wu H, Hu Z (1997) Comparative anatomy of resin ducts of the Pinaceae. Trees 11:135. doi:10.1007/s004680050069

    Article  Google Scholar 

  • Zou J, Sun Y, Li L, Wang G, Yue W, Lu Z, Wang Q, Liu J (2013) Population genetic evidence for speciation pattern and gene flow between Picea wilsonii, P. morrisonicola and P. neoveitchii. Ann Bot 112:1829–1844. doi:10.1093/aob/mct241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all botanical institutions and Botanical Gardens (BG) (Atlanta BG, Pinetum Blijdenstein, BG Bochum, BG Bonn, Plantentuin Esveld, BG Marburg, Royal BG Edinburgh, and the Jardin des Plantes Paris), as well as several private collections (Mr. Hubertus Nimsch and Mr. Albrecht Weiss) for their support in providing access to living material. Likewise, we thank the Nationaal Herbarium Nederland in Leiden and the Museum National d’ Historie Naturelle in Paris for their generous access to herbarium material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Elpe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5974 KB)

Identifications keys

Identifications keys

Identification key at the genera level on the basis of fluorescence-microscopic characters

figure a

Identification key for Amentotaxus on the basis of leaf anatomical characters

figure b

Identification key for Cephalotaxus on the basis of leaf anatomical characters

figure c

Identification key for Taxus on the basis of leaf anatomical characters

figure d

Identification key for Torreya on the basis of leaf anatomical characters

figure e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elpe, C., Knopf, P., Stützel, T. et al. Diversity and evolution of leaf anatomical characters in Taxaceae s.l.—fluorescence microscopy reveals new delimitating characters. J Plant Res 131, 125–141 (2018). https://doi.org/10.1007/s10265-017-0973-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-017-0973-x

Keywords

Navigation