Journal of Plant Research

, Volume 130, Issue 3, pp 515–525 | Cite as

The influence of slope on Spartium junceum root system: morphological, anatomical and biomechanical adaptation

  • Fabio Lombardi
  • G. S. Scippa
  • B. Lasserre
  • A. Montagnoli
  • R. Tognetti
  • M. Marchetti
  • D. Chiatante
Regular Paper


Root systems have a pivotal role in plant anchorage and their mechanical interactions with the soil may contribute to soil reinforcement and stabilization of slide-prone slopes. In order to understand the responses of root system to mechanical stress induced by slope, samples of Spartium junceum L., growing in slope and in plane natural conditions, were compared in their morphology, biomechanical properties and anatomical features. Soils sampled in slope and plane revealed similar characteristics, with the exception of organic matter content and penetrometer resistance, both higher in slope. Slope significantly influenced root morphology and in particular the distribution of lateral roots along the soil depth. Indeed, first-order lateral roots of plants growing on slope condition showed an asymmetric distribution between up- and down-slope. Contrarily, this asymmetric distribution was not observed in plants growing in plane. The tensile strength was higher in lateral roots growing up-slope and in plane conditions than in those growing down-slope. Anatomical investigations revealed that, while roots grown up-slope had higher area covered by xylem fibers, the ratio of xylem and phloem fibers to root diameter did not differ among the three conditions, as also, no differences were found for xylem fiber cell wall thickness. Roots growing up-slope were the main contributors to anchorage properties, which included higher strength and higher number of fibers in the xylematic tissues. Results suggested that a combination of root-specific morphological, anatomical and biomechanical traits, determines anchorage functions in slope conditions.


First-order lateral roots Mechanical stresses Slope condition Tensile strength Spartium junceum L. Wood anatomy 



We thank Dr. Maria Sarnataro for the soil survey and classification, and for her help with the measurements of soil resistance to penetration. We also thank Dr. Solena Sciandra for her support in field activities and lab analyses. We gratefully acknowledge two anonymous reviewers for their comments that helped to improve the manuscript. This work was supported in part by grants from MIUR (PRIN 2008 n. 223 Project Coordinator Prof. D. Chiatante), the University of Insubria (FAR) and the EC FP7 Project ZEPHYR-308313. Particular thanks to Michela di Michele, for her precious support.


  1. Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447CrossRefPubMedGoogle Scholar
  2. Bengough AG, Mullins CE (1990) Mechanical impedance to root growth-a review of experimental techniques and root growth responses. J Soil Sci 41:341–358CrossRefGoogle Scholar
  3. Bécel C, Vercambre G, Pagès L (2012) Soil penetration resistance, a suitable soil property to account for variations in root elongation and branching. Plant Soil 353:169–180CrossRefGoogle Scholar
  4. Chiatante D, Tognetti R, Scippa GS, Congiu T, Baesso B, Terzaghi M, Montagnoli A (2015) Interspecific variation in functional traits of oak seedlings (Quercus ilex, Quercus trojana, Quercus virgiliana) grown under artificial drought and fire conditions. J Plant Res 128:595–611CrossRefPubMedGoogle Scholar
  5. Chiatante D, Sarnataro M, Fusco S, Di Iorio A, Scippa GS (2003) Modification of root morphological parameters and root architecture in seedlings of Fraxinus ornus L. and Spartium junceum L. growing on slopes. Plant Biosyst 137:47–56Google Scholar
  6. Chiatante D, Di Iorio A, Scippa GS (2005) Root responses of Quercus ilex L. seedlings to drought and fire. Plant Biosyst 139:198–208Google Scholar
  7. Chiatante D, Beltotto M, Onelli E, Di iorio A, Montagnoli A, Scippa GS (2010) New branch roots produced by vascular cambium derivatives in woody parental roots of Populus nigra L. Plant Biosyst 144:420–433Google Scholar
  8. Côté WA, Day AC, Timell TE (1969) A contribution to the ultrastructure of tension wood fibers. Wood Sci Technol 3:257–271CrossRefGoogle Scholar
  9. Dagnelie P (1975) Théorie et Méthodes Statistiques, Volume 2. Les Presses Agronomiques De Gembloux, A.S.B.L., Gembloux, Belgique, p. 463Google Scholar
  10. Dagnelie P (1973) Théorie et Méthodes Statistiques, Volume 1. Les Presses Agronomiques De Gembloux, A.S.B.L., Gembloux, Belgique, p. 378Google Scholar
  11. Danjon F, Caplan JS, Fortin M, Meredieu C (2013) Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster. Front Plant Sci 4:402 10.3389/fpls.2013.00402Google Scholar
  12. De Zio E, Trupiano D, Montagnoli A, Terzaghi M, Chiatante D, Grosso A, Marra M, Scaloni A, Scippa GS (2016) Poplar woody taproot under bending stress: the asymmetric response of the convex and concave sides. Ann Bot. doi: 10.1093/aob/mcw159 PubMedPubMedCentralGoogle Scholar
  13. Di Iorio A, Lasserre B, Petrozzi L, Scippa GS, Chiatante (2008) Adaptive longitudinal growth of first-order lateral roots of a woody species (Spartium junceum L.) to slope and different soil conditions-upward growth of surface roots. Environ Exp Bot 63:207–215CrossRefGoogle Scholar
  14. Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system of Quercus pubescens trees growing on different sloping conditions. Ann Bot 95:351–361CrossRefPubMedGoogle Scholar
  15. Ebrahimi E, Bodner G, Kaul H-P, Dabbagh Mohammadi Nassab A (2014) Effects of water supply on root traits and biological yield of Durum (Triticum durum Desf.) and Khorasan (Triticum turanicum Jakubz) wheat. Plant Biosyst 148:1009–1015Google Scholar
  16. Ennos AR (1994) The biomechanics of root anchorage. Biomimetics 2:129–137Google Scholar
  17. Gartner BL (1994) Root biomechanics and whole-plant allocation patterns, responses of tomato plants to stem flexure. J Exp Bot 45:1647–1654CrossRefGoogle Scholar
  18. Genet M, Li M, Luo TX, Fourcaud T, Clement Vidal A, Stokes A (2011) Linking carbon supply to root cell wall chemistry and mechanics at high altitudes in Abies georgei. Ann Bot 107:311–320CrossRefPubMedGoogle Scholar
  19. Genet M, Stokes A, Salin F, Mickovski SB, Fourcaud T, Dumail JF, Beek R (2005) The influence of cellulose content on tensile strength in tree roots. Plant Soil 278:1–9CrossRefGoogle Scholar
  20. Goodman AM, Crook MJ, Ennos AR (2001) Anchorage mechanics of the tap root system of winter-sown oilseed rape (Brassica napus L.). Ann Bot 87:397–404CrossRefGoogle Scholar
  21. Greenway DR (1987) Vegetation and slope stability. In: Anderson MG, Richards KS (eds) Slope Stability. John Wiley and Sons Ltd., New York, pp 187–230Google Scholar
  22. Hales TC, Ford CR, Hwang T, Vose JM, Band LE (2009) Topographic and ecologic controls on root reinforcement. J Geophys Res, 114 (F3) doi: 10.1029/2008JF001168 Google Scholar
  23. Hathaway RL, Penny D (1975) Root strength in some Populus and Salix clones. N Z J Bot 13:333–344CrossRefGoogle Scholar
  24. Jaffe MJ, Biro R (1979) Thigmomorphogenesis, the effect of mechanical perturbation on the growth of plants, with special reference to anatomical changes, the role of ethylene and interactions with other environmental stresses. In: Mussell H, Staples R (eds) Stress physiology in crop plants. Wiley and Sons, New York, pp 25–69Google Scholar
  25. Laskowski M, Grieneisen VA, Hofhuis H, Hove CA, Hogeweg P, Maree AF, Scheres B (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6:e307Google Scholar
  26. Long F, Sunb HL, Li SC (2011) Influence of rocky slope gradient on root anchorage of Vitex negundo L. Plant Biosyst 145:532–539Google Scholar
  27. Marler TE, Discekici HM (1997) Root development of ‘Red Lady’ papaya to plants grown on a hillside. Plant Soil 195:37–42CrossRefGoogle Scholar
  28. Marziliano PA, Lafortezza R, Medicamento U, Lorusso L, Giannico V, Colangelo G, Sanesi G (2015) Estimating belowground biomass and root/shoot ratio of Phillyrea latifolia L. in the Mediterranean forest landscapes. Ann For Sci 72:585–593CrossRefGoogle Scholar
  29. Montagnoli A, Di Iorio A, Terzaghi M, Trupiano D, Scippa GS, Chiatante D (2014a) Influence of soil temperature and water content on fine-root seasonal growth of European beech natural forest in Southern Alps, Italy. Eur J Forest Res 133:957–968CrossRefGoogle Scholar
  30. Montagnoli A, Terzaghi M, Di Iorio A, Scippa GS, Chiatante D (2012) Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the Southern Apennines, Italy. Ecol Res 27:1015–1025CrossRefGoogle Scholar
  31. Montagnoli A, Terzaghi M, Baesso B, Santamaria R, Scippa GS, Chiatante D (2016) Drought and fire stress influence seedling competition in oak forests: fine-root dynamics as indicator of adaptation strategies to climate change. Reforesta 1:86–105Google Scholar
  32. Naghdi R, Maleki S, Abdi E, Mousavi R, Nikooy M (2013) Assessing the effect of Alnus roots on hillslope stability in order to use in soil bioengineering. J For Sci 59:417–423CrossRefGoogle Scholar
  33. Niklas KJ, Molina-Freaner F, Tinoco-Ojangueren C, Paolillo DJ (2000) Wood biomechanics and anatomy of Pachycereus pringlei. Am J Bot 87:469–481CrossRefPubMedGoogle Scholar
  34. Oladokun MA, Ennos AR (2006) Structural development and stability of rice Oryza sativa L. var. Nerica 1. J Exp Bot 57:3123–3130CrossRefPubMedGoogle Scholar
  35. Richter GL, Monshausen GB, Krol A, Gilroy S (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol 151:1855–1866CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rosell JA, Olson ME (2007) Testing implicit assumptions regarding the age vs. size dependence of stem biomechanics using Pittocaulon (Senecio) praecox (Asteraceae). Am J Bot 94:161–172CrossRefPubMedGoogle Scholar
  37. Rossi M, Trupiano D, Tamburro M, Ripabelli G, Montagnoli A, Chiatante D, Scippa GS (2015) MicroRNAs expression patterns in the response of poplar woody root to bending stress. Planta 242:339–351CrossRefPubMedGoogle Scholar
  38. Sanesi G, Lafortezza R, Colangelo G, Marziliano PA, Davies C (2013) Root system investigation in sclerophyllous vegetation: an overview. Ital J Agron 8:e17Google Scholar
  39. Schiechtl H (1980) Bioengineering for land reclamation and conservation. University of Alberta Press, Edmonton, p 404Google Scholar
  40. Scippa GS, Di Michele M, Di Iorio A, Costa A, Lasserre B, Chiatante D (2006) The response of Spartium junceum roots to slope: anchorage and gene factors. Ann Bot 97:857–866CrossRefPubMedPubMedCentralGoogle Scholar
  41. Soil Survey Division Staff (1993) Soil Survey Manual. United States Department of Agriculture Handbook No. 18. Washington D.C., 437 p.Google Scholar
  42. Sprent P (1992) Pratique de statistique non paramétriques. INRA, Paris, p 294Google Scholar
  43. Stokes A, Nicoll BC,·Coutts MP,·Fitter AH (1997) Responses of young Sitka spruce clones to mechanical perturbation and nutrition: Effects on biomass allocation, root development, and resistance to bending. Can J For Res 27:1049–1057CrossRefGoogle Scholar
  44. Stokes A, Atger C, Glyn Bengough A, Fourcaud T, Sidle RC (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324:1–30CrossRefGoogle Scholar
  45. Stokes A, Fitter AH, Coutts MP (1995) Responses of young trees to wind and shading: effects on root architecture. J Exp Bot 46:1139–1146CrossRefGoogle Scholar
  46. Stokes A, Guitard D (1997) Tree root response to mechanical tress. Biology of root formation. Plenum Press, New York, pp 227–236Google Scholar
  47. Sumida A, Terazawa I, Togashi A, Komiyama A (2002) Spatial arrangement of branches in relation to slope and neighbourhood competition. Ann Bot 89:301–310CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sun HL, Li SC, Xiongc WL, Yanga ZR, Cuib BS, Yangc T (2008) Influence of slope on root system anchorage of Pinus yunnanensis. Ecol Eng 32:60–77CrossRefGoogle Scholar
  49. Telewski FV (1995) Wind induced physiological and developmental responses in trees. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, pp. 237–263Google Scholar
  50. Terzaghi M, Di Iorio A, Montagnoli A, Baesso B, Scippa GS, Chiatante D (2016) Forest canopy reduction stimulates xylem production and lowers carbon concentration in fine roots of European beech. For Ecol Manage 379:81–90Google Scholar
  51. Timell TE (1986) Compression wood in Gymnosperms. Springer Verlag, BerlinCrossRefGoogle Scholar
  52. Trupiano D, Rocco M, Renzone G, Scaloni A, Viscosi V, Chiatante D, Scippa GS (2012) The proteome of Populus nigra woody root: response to bending. Ann Bot 110:415–432CrossRefPubMedPubMedCentralGoogle Scholar
  53. USDA (1998) USDA, Keys to Soil Taxonomy (eighth ed.), USDA, Natural Resources Conservation service (NRCS), Washington, D.CGoogle Scholar
  54. Vergani C, Schwarz M, Cohen D, Thormann JJ, Bischetti GB (2014) Effects of root tensile force and diameter distribution variability on root reinforcement in the Swiss and Italian Alps. Can J For Res 44:1426–1440CrossRefGoogle Scholar
  55. Whitehead FH, Luti R (1962) Experimental studies of the effect of wind on plant growth and anatomy. New Phytol 61:58–59Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Fabio Lombardi
    • 1
  • G. S. Scippa
    • 2
  • B. Lasserre
    • 2
  • A. Montagnoli
    • 3
  • R. Tognetti
    • 2
    • 4
  • M. Marchetti
    • 2
  • D. Chiatante
    • 3
  1. 1.Dipartimento di AGRARIAUniversità Mediterranea di Reggio CalabriaReggio CalabriaItaly
  2. 2.Dipartimento di Bioscienze e TerritorioUniversità degli Studi del MolisePescheItaly
  3. 3.Dipartimento di Biotecnologie e Scienze della VitaUniversità dell’InsubriaVareseItaly
  4. 4.The EFI project centre on mountain forests (MOUNTFOR)Edmund Mach FoundationSan Michele all’AdigeItaly

Personalised recommendations