Journal of Plant Research

, Volume 130, Issue 3, pp 443–453 | Cite as

Phototaxis and chemotaxis of brown algal swarmers

  • Nana Kinoshita
  • Chikako Nagasato
  • Taizo Motomura
JPR Symposium Fusion in Fertilization: Interdisciplinary Collaboration among Plant and Animal Scientists


Brown algae exhibit three patterns of sexual reproduction: isogamy, anisogamy, and oogamy. Unicellular swarmers including gametes and zoospores bear two heterogenous flagella, an anterior flagellum with mastigonemes (fine tripartite hairs) and a posterior one. In seawater, these flagellates usually receive physico-chemical signals for finding partners and good habitats. It is well known that brown algal swarmers change their swimming direction depending on blue light (phototaxis), and male gametes do so, based on the sex pheromones from female gametes (chemotaxis). In recent years, the comparative analysis of chemotaxis in isogamy, anisogamy, and oogamy has been conducted. In this paper, we focused on the phototaxis and chemotaxis of brown algal gametes comparing the current knowledge with our recent studies.


Brown algae Calcium Chemotaxis Flagella Gametes Phototaxis 



We sincerely thank Dr. Makoto Terauchi, Kobe University, and Dr. Tatsuya Togashi, Chiba University, for helpful discussions. We also thank Drs. Kogiku Shiba and Kazuo Inaba of the Shimoda Marine Research Center, University of Tsukuba, for their many valuable comments. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. Amsler CD, Neushul M (1989) Chemotactic effects of nutrients on spores of the kelps Macrocytis pyrifera and Pterygophora california. Mar Biol 102:557–564CrossRefGoogle Scholar
  2. Amsler CD, Neushul M (1990) Nutrient stimulation of spore settlement in the kelps Pterygophora californica and Macrocystis pyrifera. Mar Biol 107:297–304CrossRefGoogle Scholar
  3. Amsler CD, Reed DC, Neushul M (1992) The microclimate inhabited by macroalgal propagules. Br Phycol J 27:253–270CrossRefGoogle Scholar
  4. Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522PubMedCrossRefGoogle Scholar
  5. Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706PubMedCrossRefGoogle Scholar
  6. Bouck GB (1969) Extracellular microtubules: the origin, structure, and attachment of flagellar hairs in Fucus and Ascophyllum antherozoids. J Cell Biol 40:446–460PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brokaw CJ (1979) Calcium-induced asymmetrical beating of Triton-demembranated sea urchin sperm flagella. J Cell Biol 82:401–411PubMedCrossRefGoogle Scholar
  8. Brokaw CL, Kamiya R (1987) Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton 8:68–75PubMedCrossRefGoogle Scholar
  9. Brokaw CJ, Josslin R, Bobrow L (1974) Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem Biophys Res Commun 58:795–800PubMedCrossRefGoogle Scholar
  10. Cardullo RA, Herrick SB, Peterson MJ, Dangott LJ (1994) Speract receptors are localized on sea urchin flagella using a fluorescent peptide analog. Dev Biol 162:600–607PubMedCrossRefGoogle Scholar
  11. Coleman AW (1988) The autofluorescent flagellum: a new phylogenetic enigma. J Phycol 24:118–120CrossRefGoogle Scholar
  12. Dring MJ (1988) Photocontrol of development in algae. Annu Rev Plant Physiol Plant Mol Biol 39:199–207CrossRefGoogle Scholar
  13. Dring MJ, Lüning K (1975) A photoperiodic response mediated by blue light in the brown alga Scytosiphon lomentaria. Planta 125:25–32PubMedCrossRefGoogle Scholar
  14. Feinleib MEH, Curry GM (1971) The relationship between stimulus intensity and oriented phototactic response (topotaxis) in Chlamydomonas. Physiol Plant 25:346–352CrossRefGoogle Scholar
  15. Fletcher RL, Callow ME (1992) The settlement, attachment and establishment of marine algal spores. Br Phycol J 27:303–329CrossRefGoogle Scholar
  16. Flores-Moya A, Posudin YI, Fernández JA, Figueroa FL, Kawai H (2002) Photomovement of the swarmers of the brown algae Scytosiphon lomentaria and Petalonia fascia: effect of photon irradiance, spectral composition and UV dose. J Photochem Photobiol B 66:134–140PubMedCrossRefGoogle Scholar
  17. Frenkel J, Vyverman W, Pohnert G (2014) Pheromone signaling during sexual reproduction in algae. Plant J 79:632–644PubMedCrossRefGoogle Scholar
  18. Fu G, Nagasato C, Ito T, Müller DG, Motomura T (2013) Ultrastructural analysis of flagellar development in plurilocular sporangia of Ectocarpus siliculosus (Phaeophyceae). Protoplasma 250:261–272PubMedCrossRefGoogle Scholar
  19. Fu G, Kinoshita N, Nagasato C, Motomura T (2014a) Fertilization of brown algae: flagellar function in phototaxis and chemotaxis. In: Sawada H, Inoue N, Iwano M (eds) Sexual reproduction in animals and plants. Springer, Tokyo, pp 359–367CrossRefGoogle Scholar
  20. Fu G, Nagasato C, Oka S, Cock JM, Motomura T (2014b) Proteomics analysis of heterogeneous flagella in brown algae (Stramenopiles). Protist 165:662–675PubMedCrossRefGoogle Scholar
  21. Fu G, Nagasato C, Yamagishi T, Kawai H, Okuda K, Takao Y, Horiguchi T, Motomura T (2016) Ubiquitous distribution of helmchrome in phototactic swarmers of the stramenopiles. Protoplasma 253:929–941PubMedCrossRefGoogle Scholar
  22. Fujita S, Iseki M, Yoshikawa S, Makino Y, Watanabe M, Motomura T, Kawai H, Murakami A (2005) Identification and characterization of a fluorescent flagellar protein from the brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae): A flavoprotein homologous to Old Yellow Enzyme. Eur J Phycol 40:159–167CrossRefGoogle Scholar
  23. Geller A, Müller DG (1981) Analysis of the flagellar beat pattern of male Ectocarpus siliculosus gametes (Pheophyta) in relation to chemotactic stimulation by female cells. J Exp Biol 92:53–66Google Scholar
  24. Gibbons IR (1981) Cilia and flagella of eukaryotes. J Cell Biol 91(suppl):107s–124sPubMedCrossRefGoogle Scholar
  25. Gibbons BH, Gibbons IR (1973) The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J Cell Sci 13:337–357PubMedGoogle Scholar
  26. Glantz ST, Carpenter EJ, Melkonian M, Gardner KH, Boyden ES, Wong GK, Chow BY (2016) Functional and topological diversity of LOV domain photoreceptors. PNAS 113:E1442–E1451. doi: 10.1073/pnas.1509428113 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Guerrero A, Nishigaki T, Carneiro J, Yoshiro T, Wood CD, Darszon A (2010) Tuning sperm chemotaxis by calcium burst timing. Dev Biol 334:52–65CrossRefGoogle Scholar
  28. Häder D-P (1988) Ecological consequences of photomovement in microorganisms. J Photochem Photobiol B 1:385–414CrossRefGoogle Scholar
  29. Häder D-P, Colombetti G, Lenci F, Quaglia M (1981) Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica. Arch Microbiol 130:78–82CrossRefGoogle Scholar
  30. Henry EC, Cole KM (1982) Ultrastructure of swarmers in the Laminariales (Phaeophyreae). I. Zoospores. J Phycol 18:550–569CrossRefGoogle Scholar
  31. Holwill MEJ, Sleigh MA (1967) Propulsion by hispid flagella. J Exp Biol 47:267–276PubMedGoogle Scholar
  32. Inaba K (2003) Molecular architecture of the sperm flagella: molecules for motility and signaling. Zool Sci 20:1043–1056PubMedCrossRefGoogle Scholar
  33. Inaba K (2011) Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod 17:524–538PubMedCrossRefGoogle Scholar
  34. Jaenicke L, Starr RC (1996) The lurlenes, a new class of plastoquinone-related mating pheromones from Chlamydomonas allensworthii (Chlorophyceae). Eur J Biochem 241:581–585PubMedCrossRefGoogle Scholar
  35. Jahn TL, Landman MD, Fonseca JR (1964) The mechanism of locomotion of flagellates. II. Function of the mastigonemes of Ochromonas. J Protozool 11:291–296CrossRefGoogle Scholar
  36. Kaupp UB, Solzin J, Hildebrand E, Brown JE, Helbig A, Hagen V, Beyermann M, Pampaloni F, Weyand I (2003) The signal flow and motor response controlling chemotaxis of sea urchin sperm. Nat Cell Biol 5:109–117PubMedCrossRefGoogle Scholar
  37. Kaupp UB, Kashikar ND, Weyand I (2008) Mechanisms of sperm chemotaxis. Annu Rev Physiol 70:93–117PubMedCrossRefGoogle Scholar
  38. Kawai H (1988) A flavin-like autofluorescent substance in the posterior flagellum of golden and brown algae. J Phycol 24:114–117CrossRefGoogle Scholar
  39. Kawai H (1992a) A summary of the morphology of chloroplasts and flagellated cells in the Phaeophyceae. Korean J Phycol 7:33–43Google Scholar
  40. Kawai H (1992b) Green flagellar autofluorencence in brown algal swarmers and their phototactic responses. Bot Mag Tokyo 105:171–184CrossRefGoogle Scholar
  41. Kawai H, Kreimer G (2000) Sensory mechanisms: light perception and taxis in algae. In: Leadbeater B, Green J (eds) The flagellates: unity, diversity and evolution. Taylor and Francis, London, pp 124–146Google Scholar
  42. Kawai H, Müller DG, Fölster E, Häder D-P (1990) Phototactic responses in the gametes of the brown alga, Ectocarpus siliculosus. Planta 182:292–297PubMedCrossRefGoogle Scholar
  43. Kawai H, Kubota M, Kondo T, Watanabe M (1991) Action spectra for phototaxis in zoospores of the brown alga Pseudochorda gracilis. Protoplasma 161:17–22CrossRefGoogle Scholar
  44. Kinoshita N, Fu G, Ito T, Motomura T (2016a) Three-dimensional organization of flagellar basal apparatus in Ectocarpus gametes. Phycol Res 64:19–25CrossRefGoogle Scholar
  45. Kinoshita N, Nagasato C, Motomura T (2016b) Chemotactic movement in sperm of the oogamous brown alga, Saccharina japonica and Fucus distichus. Protoplasma. doi: 10.1007/s00709-016-0974-y PubMedGoogle Scholar
  46. Kinoshita N, Shiba K, Inaba K, Fu G, Nagasato C, Motomura T (2016c) Flagellar waveforms of gametes in the brown alga, Ectocarpus siliculosus. Eur J Phycol 51:139–148CrossRefGoogle Scholar
  47. Kinoshita N, Tanaka A, Nagasato C, Motomura T (2016d) Chemotaxis in the anisogamous brown alga Mutimo cylindricus. Phycologia 55:359–364CrossRefGoogle Scholar
  48. Kitayama T, Kawai H, Yoshida T (1992) Dominance of female gametophytes in field populations of Cutleria cylindrica (Cutleriales, Phaeophyceae) in the Tsugaru Strait, Japan. Phycologia 31:449–461CrossRefGoogle Scholar
  49. Kochert G (1978) Sexual pheromones in algae and fungi. Annu Rev Plant Physiol 29:461–486CrossRefGoogle Scholar
  50. Kreimer G, Kawai H, Müller DG, Melkonian M (1991) Reflective properties of the stigma in male gametes of Ectocarpus siliculosus (Phaeophyceae) studied by confocal laser scanning microscopy. J Phycol 27:268–276CrossRefGoogle Scholar
  51. Lindemann CB (2004) Testing the geometric clutch hypothesis. Biol Cell 96:681–690PubMedCrossRefGoogle Scholar
  52. Lipinska AP, D’hondt S, Damme EJV, Clerck OD (2013) Uncovering the genetic basis for early isogamete differentiation: a case study of Ectocarpus siliculosus. BMC Genom 14:909CrossRefGoogle Scholar
  53. Lipinska AP, Damme EJV, Clerck OD (2016) Molecular evolution of candidate male reproductive genes in the brown algal model Ectocarpus. BMC Evol Biol 16:5PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lüning K (1981) Egg release in gametophytes of Laminaria saccharina: induction by darkness and inhibition by blue light and UV. Br Phycol J 16:379–393CrossRefGoogle Scholar
  55. Luthringer R, Cormier A, Ahmed S, Peters AF, Cock JM, Coelho SM (2014) Sexual dimorphism in the brown algae. Perspect Phycol 1:11–25CrossRefGoogle Scholar
  56. Maier I (1993) Gamete orientation and induction of gametogenesis by pheromone in algae and plants. Plant Cell Environ 16:891–907CrossRefGoogle Scholar
  57. Maier I (1995) Brown algal pheromones. In: Round FE, Chapman DJ (eds) Progress in phycological research 11. Biopress, Bristol, pp 51–102Google Scholar
  58. Maier I (1997a) The fine structure of the male gamete of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae). I. General structure of the cell. Eur. J Phycol 32:241–253CrossRefGoogle Scholar
  59. Maier I (1997b) The fine structure of the male gamete of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae). II. The flagellar apparatus. Eur J Phycol 32:255–266CrossRefGoogle Scholar
  60. Maier I, Calenberg M (1994) Effect of extracellular Ca2+ and Ca2+ antagonists on the movement and chemoorientation of male gametes of Ectocarpus siliculosus (Phaeophyceae). Botanica Acta 107:451–460CrossRefGoogle Scholar
  61. Maier I, Müller DG (1982) Antheridium fine structure and spermatozoid release in Laminaria digitata. Phycologia 21:1–8CrossRefGoogle Scholar
  62. Maier I, Müller DG (1986) Sexual pheromones in algae. Biol Bull 170:145–175CrossRefGoogle Scholar
  63. Maier I, Müller DG (1990) Chemotaxis in Laminaria digitata (Phaeophyceae) I. Analysis of spermatozoid movement. J Exp Bot 41:869–876CrossRefGoogle Scholar
  64. Maier I, Schmid CE (1995) An immunofluorescence study on lectin binding sites in gametes of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae). Phycol Res 43: 33–42CrossRefGoogle Scholar
  65. Maier I, Wenden A, Clayton MN (1992) The movement of Hormosira banksii (Fucales, Phaeophyta) spermatozoids in response to sexual pheromone. J Exp Bot 43:1651–1657CrossRefGoogle Scholar
  66. Matsunaga S, Uchida H, Iseki M, Watanabe M, Murakami A (2010) Flagellar motions in phototactic steering in a brown algal swarmer. Photochem Photobiol B 86:374–381CrossRefGoogle Scholar
  67. Mizuno K, Shiba K, Okai M, Takahashi Y, Shitaka Y, Oiwa K, Tanokura M, Inaba K (2012) Calaxin drives sperm chemotaxis by Ca2+-mediated direct modulation of a dynein motor. Proc Natl Acad Sci USA 109:20497–20502PubMedPubMedCentralCrossRefGoogle Scholar
  68. Morel-Laurens N (1987) Calcium control of phototactic orientation in Chlamydomorias reinhardtii: sign and strength of response. Photochem Photobiol 45:119–128PubMedCrossRefGoogle Scholar
  69. Müller DG (1977) Sexual reproduction in British Ectocarpus siliculosus (Phaeophyta). Br Phycol J 12:131–136CrossRefGoogle Scholar
  70. Müller DG (1978) Locomotive responses of male gametes to the species-specific sex attractant in Ectocarpus siliculosus (Phaeophyta). Archiv für Protistenkund 120:371–377CrossRefGoogle Scholar
  71. Müller DG (1979) Olefinic hydrocarbons in seawater: Signal molecules for sexual reproduction in brown algae. Pure Appl Chem 51:1885–1891CrossRefGoogle Scholar
  72. Müller DG, Falk H (1973) Flagellar structure of the gametes of Ectocarpus siliculosus (Phaeophyta) as revealed by negative staining. Archiv für Mikrobiol 91:313–322CrossRefGoogle Scholar
  73. Müller DG, Gassmann G, Lüning K (1979) Isolation of a spermatozoid-releasing and -attracting substance from female gametophytes of Laminaria digitata. Nature 279:430–431PubMedCrossRefGoogle Scholar
  74. Müller DG, Maier I, Müller H (1987) Flagellum autofluorescence and photoaccumulation in heterokont algae. Photochem Photobiol 46:1003–1008CrossRefGoogle Scholar
  75. Nagasato C, Motomura T, Ichimura T (1998) Selective disappearance of maternal centrioles after fertilization in the anisogamous brown alga Cutleria cylindrica (Cutleriales, Phaeophyceae): paternal inheritance of centrioles is universal in the brown algae. Phycol Res 46:191–198CrossRefGoogle Scholar
  76. Nishigaki T, Chiba K, Hoshi M (2000) A 130-kDa membrane protein of sperm flagella is the receptor for asterosaps, sperm-activating peptides of starfish Asterias amurensis. Dev Biol 219:154–162PubMedCrossRefGoogle Scholar
  77. Nozaki H, Yamada TK, Takahashi F, Matsuzaki R, Nakada T (2014) New “missing link” genus of the colonial volvocine green algae gives insights into the evolution of oogamy. BMC Evol Biol 14:37PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nultsch W, Häder D-P (1988) Photomovement in motile microorganisms. II. Photochem Photobiol 47:837–869PubMedCrossRefGoogle Scholar
  79. O’Kelly CJ (1989) The evolutionary origin of the brown algae: information from studies of motile cell structure. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives, systematics association special, 38. Clarendon Press, Oxford, pp 256–278Google Scholar
  80. O’Kelly CJ, Floyd GL (1984) The absolute configuration of the flagellar apparatus in zoospores from two species of Laminariales (Phaeophyceae). Protoplasma 123:18–25CrossRefGoogle Scholar
  81. Pearson GA, Serrão EA, Dring MJ, Schmid R (2004) Blue- and green-light signals for gamete release in the brown alga, Silvetia compressa. Oecologia 138:193–201PubMedCrossRefGoogle Scholar
  82. Reed DC, Laur DR, Ebeling AW (1988) Variation in algal dispersal and recruitment: the importance of episodic events. Ecol Monogr 58:321–335CrossRefGoogle Scholar
  83. Schmid CE (1993) Cell-cell-recognition during fertilization in Ectocarpus siliculosus (Phaeophyceae). Hydrobiologia 261:437–443CrossRefGoogle Scholar
  84. Schmid CE, Schroer N, Müller DG (1994) Female gamete membrane glycoproteins potentially involved in gamete recognition in Ectocarpus siliculosus (Phaeophyceae). Plant Sci 102:61–67CrossRefGoogle Scholar
  85. Shiba K, Baba SA, Inoue T, Yoshida M (2008) Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response. Proc Natl Acad Sci USA 105:19312–19317PubMedPubMedCentralCrossRefGoogle Scholar
  86. Silberfeld T, Leigh JW, Verbruggen H, Cruaud C, de Reviers B, Rousseau F (2010) A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the “brown algal crown radiation”. Mol Phylogenet Evol 56:659–674PubMedCrossRefGoogle Scholar
  87. Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang W-J, Dangott LJ, Chinkers M, Goeddel DV, Garbers DL (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334:708–712PubMedCrossRefGoogle Scholar
  88. Starr RC, Marner FJ, Jaenicke L (1995) Chemoattraction of male gametes by a pheromone produced by female gametes of Chlamydomonas. Proc Natl Acad Sci USA 92:641–645PubMedPubMedCentralCrossRefGoogle Scholar
  89. Takahashi F (2016) Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles. J Plant Res 129:189–197PubMedCrossRefGoogle Scholar
  90. Takahashi T, Watanabe M (1993) Photosynthesis modulates the sign of phototaxis of wild-type Chlamydomonas reinhardtii. Effects of red background illumination and 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea. FEBS Lett 336:516–520PubMedCrossRefGoogle Scholar
  91. Teves ME, Guidobaldi HA, Unates DR, Sanchez R, Miska W, Publicover SJ, Morales Garcia AA, Giojalas LC (2009) Molecular mechanism for human sperm chemotaxis mediated by progesterone. PLoS One 4:e8211PubMedPubMedCentralCrossRefGoogle Scholar
  92. Togashi T, Bartelt JL (2011) Evolution of anisogamy and related phenomena in marine green algae. In: Togashi T, Cox PA (eds) The evolution of anisogamy: a fundamental phenomenon underlying sexual selection. Cambridge University Press, Cambridge, pp 194–242CrossRefGoogle Scholar
  93. Wakabayashi K, Misawa Y, Mochiji S, Kamiya R (2011) Reduction–oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 108:11280–11284PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ward GE, Brokaw CJ, Garbers DL, Vacquier VD (1985) Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J Cell Biol 101:2324–2329PubMedCrossRefGoogle Scholar
  95. Wood CD, Nishigaki T, Furuta T, Baba SA, Darszon A (2005) Real-time analysis of the role of Ca2+ in flagellar movement and motility in single sea urchin sperm. J Cell Biol 169:725–731PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wynne MJ, Loiseaux S (1976) Recent advances in life history studies of the Phaeophyta. Phycologia 15:435–452CrossRefGoogle Scholar
  97. Yamagishi T, Motomura T, Nagasato C, Kato A, Kawai H (2007) A tubular mastigoneme-related protein Ocm1 isolated from the flagellum of a chromophyte alga Ochromonas danica. J Phycol 43:519–527CrossRefGoogle Scholar
  98. Yamagishi T, Motomura T, Nagasato C, Kato A, Kawai H (2009) Novel proteins comprising the stramenopile tripartite mastigoneme in Ochromonas danica (Chrysophyceae). J Phycol 45:1100–1105CrossRefGoogle Scholar
  99. Yamanouchi S (1912) The life history of Cutleria. Contr Hull Bot Lab163. Bot Gaz 54:441–502CrossRefGoogle Scholar
  100. Yoshida M, Yoshida K (2011) Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol Hum Reprod 17:457–465PubMedCrossRefGoogle Scholar
  101. Yoshida M, Inaba K, Ishida K, Morisawa M (1994) Calcium and cyclic AMP mediate sperm activation, but Ca2+ alone contributes sperm chemotaxis in ascidian, Ciona savignyi. Dev Growth Differ 36:589–595CrossRefGoogle Scholar
  102. Yoshida M, Ishikawa M, Izumi H, De Santis R, Morisawa M (2003) Store-operated calcium channel regulates the chemotactic behavior of ascidian sperm. Proc Natl Acad Sci USA 100:149–154PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Nana Kinoshita
    • 1
  • Chikako Nagasato
    • 2
  • Taizo Motomura
    • 2
  1. 1.Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
  2. 2.Muroran Marine Station, Field Science Center for Northern BiosphereHokkaido UniversityMuroranJapan

Personalised recommendations