Morphological analysis of vessel elements for systematic study of three Zingiberaceae tribes
- 337 Downloads
Abstract
Zingiberaceae containing over 1,000 species that are divided into four subfamilies and six tribes. In recent decades, there has been an increase in the number of studies about vessel elements in families of monocotyledon. However, there are still few studies of Zingiberaceae tribes. This study aims to establish systematic significance of studying vessel elements in two subfamilies and three tribes of Zingiberaceae. The vegetative organs of 33 species processed were analysed by light and scanning electron microscopy and Principal Component Analysis was used to elucidate genera boundaries. Characteristics of vessel elements, such as the type of perforation plate, the number of bars and type of parietal thickening, are proved to be important for establishing the relationship among taxa. Scalariform perforation plate and the scalariform parietal thickening are frequent in Zingiberaceae and may be a plesiomorphic condition for this taxon. In the Principal Component Analysis, the most significant characters of the vessel elements were: simple perforation plates and partially pitted parietal thickening, found only in Alpinieae tribe, and 40 or more bars composing the plate in Elettariopsis curtisii, Renealmia chrysotricha, Zingiber spectabile, Z. officinale, Curcuma and Globba species. Vessel elements characters of 18 species of Alpinieae, Zingibereae and Globbeae were first described in this work.
Keywords
Alpinoideae Globbeae Monocotyledon Root Xylem ZingiberoideaeNotes
Acknowledgements
The authors are indebted to Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), the Fundacao de Amparo a Pesquisa do Rio de Janeiro (FAPERJ) and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for their financial support, and Mike Bordelon and Ida Lopez for the logistical and technical support of in the Smithsonian National Museum of Natural History. This study was part of the tese of the first author, presented to the Programa de Pós-Graduação em Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF).
References
- Benedict JC, Smith SY, Collinson ME, Leong-Skornicková J, Specht CD, Marone F, Xiao X Parkinson DY (2015) Seed morphology and anatomy and its utility in recognizing subfamilies and tribes of Zingiberaceae. Am J Bot 102:1–28. doi: 10.3732/ajb.1500300 CrossRefGoogle Scholar
- Brodersen CR, Mcelrone AJ (2013) Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front Plant Sci 4:1–11. doi: 10.3389/fpls.2013.00108 CrossRefGoogle Scholar
- Carlquist S (2001) Comparative wood anatomy. Spinger, BerlinCrossRefGoogle Scholar
- Carlquist S (2012) Monocot xylem revisited: new information, new paradigms. Bot Rev 78:87–153. doi: 10.1139/B2012-048 CrossRefGoogle Scholar
- Carlquist S, Schneider EL (1998) Origin and Nature of vessels in monocotyledons. 5. Araceae subfamily Colocasioideae. Bot J Linn Soc 128:71–86. doi: 10.1006/bojl.1998.0181 CrossRefGoogle Scholar
- Carlquist S, Schneider EL (2006) Origin and nature of vessels in monocotyledons. 8. Orchidaceae. Am J Bot 93:963–971. doi: 10.3732/ajb.93.7.963 CrossRefPubMedGoogle Scholar
- Carlquist S, Schneider EL (2007) Origin and nature of vessels in monocotyledons. 9. Sansevieria. S Afr J Bot 73:196–203. doi: 10.1016/j.sajb.2006.11.002 CrossRefGoogle Scholar
- Carlquist S, Schneider EL (2010a) Origin and nature of vessels in monocotyledons. 11. Primary xylem microstructure, with examples from Zingiberales. Int J Plant Sci 171:258–266. doi: 10.1086/650160 CrossRefGoogle Scholar
- Carlquist S, Schneider EL (2010b) Origin and nature of vessels in monocotyledons. 12. pit membrane microstructure diversity in tracheary elements of Astelia. Pac Sci 64:607–618. doi: 10.2984/64.4.607 CrossRefGoogle Scholar
- Carlquist S, Schneider EL (2014) Origins and nature of vessels in monocotyledons. 14. Vessellessness in Orontioideae (Araceae): adaptation or relictualism? Nord J Bot 32:493–502. doi: 10.1111/j.1756-1051.2013.00408.x CrossRefGoogle Scholar
- Chalk L (1989) Wood anatomy, phylogeny, and taxonomy. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons. Oxford University Press, Oxford, pp 108–125Google Scholar
- Cheadle VI (1942) The occurrence and types of vessels in various organs of the plant in the Monocotyledoneae. Am J Bot 29:441–450CrossRefGoogle Scholar
- Cheadle VI, Kosakai H (1980) Ocurrence and specialization of vessels in Commelinales. Phytomorphology 30:98–117Google Scholar
- Cheadle VI, Kosakai H (1982) Ocurrence and specialization of vessels in Xyridales. Nord J Bot 2:97–109. doi: 10.1111/j.1756-1051.1982.tb01168.x CrossRefGoogle Scholar
- Cochard H, Ewers FW, Tyree MT (1994) Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism. J Exp Bot 45:1085–1089. doi: 10.1093/jxb/45.8.1085 CrossRefGoogle Scholar
- Cysneiros VC, Pereira-Moura MVL, Paula EP, Braz DM (2011) Arboreal Eudicotyledons, Universidade Federal Rural do Rio de Janeiro Botanical Garden, state of Rio de Janeiro, Brazil, Check List 7:pp 1–6Google Scholar
- Ewers FW, Cochard H, Tyree MT (1997) A survey of root pressures in vines of a tropical lowland forest. Oecologia 110:191–196. doi: 10.1007/s004420050149 CrossRefPubMedGoogle Scholar
- Fisher JB, Angeles G, Ewers FW, Lopes-Portillo J (1997) Survey of root pressure in tropical vines and woody species. Int J Plant Sci 158:44–50CrossRefGoogle Scholar
- Franklin GL (1945) Preparation of thin sections of synthetic resin and wood-resin composites, and a new macerating method for wood. Nature 155:51CrossRefGoogle Scholar
- Gevu KV, Da Cunha M, Barros CF, Lima HRP (2014) Structural analysis of subterranean organs in Zingiberaceae. Plant Syst Evol 300:1089–1098. doi: 10.1007/s00606-013-0947-y CrossRefGoogle Scholar
- Holttum RE (1950) The Zingiberaceae of the Malay Peninsula. Gard Bull Singap 13:1–249Google Scholar
- Jensen WA (1962) Botanical histochemistry: principles and pratice. WH Freeman & Company, San FranciscoGoogle Scholar
- Johansen DA (1940) Plant microtechinique, 3rd edn. MacGraw-Hill Book Company, Inc, New YorkGoogle Scholar
- Judd WS, Campbell CS, Kellog EA, Stevens PF, Donoghue MJ (2009) Sistemática vegetal: um enfoque filogenético, 3rd edn. Artmed, Porto AlegreGoogle Scholar
- Kress WJ, Prince LM, Williams KJ (2002) The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. Am J Bot 89:10. doi: 10.3732/ajb0.1682 CrossRefGoogle Scholar
- Kress WJ, Liu A, Newman M, Li Q (2005) The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers. Am J Bot 92:167–178. doi: 10.3732/ajb.92.1.167 CrossRefPubMedGoogle Scholar
- Larsen K, Lock J, Mass H, Mass PJM (1998) Zingiberaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 4. Springer, Berlin, pp 474–495Google Scholar
- Lima WG, Guedes-Bruni RR (2004) Myrceugenia (Myrtaceae) ocorrentes no Parque Nacional do Itatiaia, Rio de Janeiro. Rodriguésia 55:73–94Google Scholar
- Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org
- Miranda EE, Colombini F (2009) Jardins Botânicos do Brasil. Metalivros, São Paulo, p 173Google Scholar
- Pace MR, Botânico MP, Angyalossy V (2011) Diversity of metaxylem vessel elements in three Syagrus palms (Arecaceae) of different habits. Acta Bot Bras 25:315–323. doi: 10.1590/S0102-33062011000200007 CrossRefGoogle Scholar
- Pedersen LB (2004) Phylogenetic analysis of the subfamily Alpinioideae (Zingiberaceae), particularly Etlingera Giseke, based on nuclear and plastid DNA. Plant Syst Evol 245:239–258. doi: 10.1007/s00606-004-0126-2 CrossRefGoogle Scholar
- Petersen OG (1889) Musaceae, Zingiberaceae, Cannaceae, Marantaceae. In: Engler HGA, Prantl KAE (eds) Die Natürlichen Pflanzenfamilien, vol 1. Verlag von Wilhelm Engelmann, Leipzig, pp 1–30Google Scholar
- R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
- Rodrigues AC, Estelita ME (2009) Diferenciação dos feixes vasculares e dos elementos traqueais no rizoma de algumas Cyperaceae. Rev Bras Bot 32:349–359. doi: 10.1590/S0100-84042009000200014 CrossRefGoogle Scholar
- Rodrigues AC, Cavalcanti TA, Lima RS, Estelita MEM (2007) Elementos de vaso do sistema subterrâneo de cinco espécies de Cyperus L. (Cyperaceae) ocorrentes na Caatinga paraibana. INSULA 36:27–37Google Scholar
- Scheneider EL, Carlquist S (2005) Origin and nature of vessels in monocotyledons. 6. Hanguana (Hanguanaceae). Pac Sci 59:393–398. doi: 10.1353/psc.2005.0040 CrossRefGoogle Scholar
- Souza VC, Lorenzi H (2012) Botânica Sistemática: Guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, baseado em APG III, 3rd edn. Nova Odessa, Instituto Plantarum de Estudos da Flora LTDA, São Paulo, pp 203–204Google Scholar
- Sperry JS (1986) Relationship of xylem embolism to xylem pres-sure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiol 80:110–116CrossRefPubMedPubMedCentralGoogle Scholar
- Storck-Tonon D, Morato EF, Oliveira ML (2009) Fauna de Euglossina (Hymenoptera: Apidae) da Amazônia Sul-Ocidental, Acre, Brasil. ACTA Amazonica 39:693–706. doi: 10.1590/S0044-59672009000300026 CrossRefGoogle Scholar
- Thorsch JA (2000) Vessels in Zingiberaceae: a light, scanning, and transmission microscope study. J IAWA 21:61–76. doi: 10.1163/22941932-90000237 CrossRefGoogle Scholar
- Thorsch JA, Cheadle VI (1996) Vessels in Eriocaulaceae. J IAWA 17:183–204. doi: 10.1163/22941932-90001449 CrossRefGoogle Scholar
- Tomlinson PB (1956) Studies in the systematic anatomy of the Zingiberaceae. Bot J Linn Soc 55:547–592. doi: 10.1111/j.1095-8339.1956.tb00023.x CrossRefGoogle Scholar
- Tomlinson PB (1969) Classification of the Zingiberales (Scitamineae) with special reference to anatomical evidences. In: Metcalfe CR (ed) Anatomy of the monocotyledons, vol 3. Clarendon Press, Oxford, pp 224–302Google Scholar
- Uma E, Muthukumar T (2014) Comparative root morphological anatomy of Zingiberaceae. Syst Biodivers 12:195–209. doi: 10.1080/14772000.2014.894593 CrossRefGoogle Scholar
- Wagner P (1977) Vessel types of the monocotyledons: a survey. Bot Notiser 130:383–402Google Scholar
- Wang F, Tian X, Ding Y, Wan X, Tyree MT (2011) A survey of root pressure in 53 Asian species of bamboo. Ann For Sci 68:783–791. doi: 10.1007/s13595-011-0075-1 CrossRefGoogle Scholar
- Williams KJ, Kress WJ, Manos P (2004) The phylogeny, evolution, and classification of the genus Globba and tribe Globbeae (Zingiberaceae): appendages do matter. Am J Bot 91:100–114. doi: 10.3732/ajb.91.1.100 CrossRefPubMedGoogle Scholar
- Xia Y, Kress WJ, Prince LM (2004) Phylogenetic analysis of Amomum (Alpinioideae: Zingiberaceae) using ITS and matK DNA sequence data. Syst Bot 29:334–344. doi: 10.1600/036364404774195520 CrossRefGoogle Scholar
- Yang SJ, Zhang YJ, Sun M, Goldstein G, Cao KF (2012) Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure. Tree Physiol 32:414–422. doi: 10.1093/treephys/tps028 CrossRefPubMedGoogle Scholar