Journal of Plant Research

, Volume 130, Issue 2, pp 387–396 | Cite as

Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.)

Regular Paper

Abstract

Heat shock proteins (HSPs) are a ubiquitously expressed class of protective proteins that play a key role in plant response to stressful conditions. This study aimed to characterize and investigate the function of an HSP gene in alfalfa (Medicago sativa). MsHSP70, which contains a 2028-bp open reading frame, was identified through homology cloning. MsHSP70 shares high sequence identity (94.47%) with HSP70 from Medicago truncatula. Expression analysis of MsHSP70 in alfalfa organs revealed a relatively higher expression level in aerial organs such as flowers, stems and leaves than in roots. MsHSP70 was induced by heat shock, abscisic acid (ABA) and hydrogen peroxide. Transgenic Arabidopsis seedlings overexpressing MsHSP70 were hyposensitive to polyethylene glycol (PEG) and ABA treatments, suggesting that exogenous expression of MsHSP70 enhanced Arabidopsis tolerance to these stresses. Examination of physiological indexes related to drought and ABA stress demonstrated that in comparison with non-transgenic plants, T3 transgenic Arabidopsis plants had an increased proline content, higher superoxide dismutase (SOD) activity, and decreased malondialdehyde (MDA) content. Furthermore, higher relative water content (RWC) was detected in transgenic plants compared with non-transgenic plants under drought stress. These findings clearly indicate that molecular manipulation of MsHSP70 in plants can have substantial effects on stress tolerance.

Keywords

Heat shock protein Medicago sativa Stress response Transgenic Arabidopsis 

Abbreviations

HSP

Heat shock protein

ABA

Abscisic acid

SOD

Superoxide dismutase

MDA

Malondialdehyde

RWC

Relative water content

ORF

Open reading frame

kDa

Kilodalton

GFP

Green fluorescent protein

PEG

Polyethylene glycol

qPCR

Quantitative real-time PCR

Notes

Acknowledgements

This work was supported by the National Program on Key Basic Research Project (Grant Number: 2014CB138703-2), the China Agriculture Research System (Grant Number: CARS-35-04) and The Agricultural Science and Technology Innovation Program (Grant Number: ASTIP-IAS14).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10265_2017_905_MOESM1_ESM.pdf (8.6 mb)
Supplementary material 1 (PDF 8823 KB)

References

  1. Aranda MA, Escaler M, Wang D, Maule AJ (1996) Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci USA 93:15289–15293. doi: 10.1073/pnas.93.26.15289 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Asada K, Foyer CH, Mullineaux PM (1994) Production and action of active oxygen species in photosynthetic tissues. Causes Photooxidative Stress Aamelioration Def Syst Plants 77–104.Google Scholar
  3. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207. doi: 10.1007/BF00018060 CrossRefGoogle Scholar
  4. Bush GL, Meyer DI (1996) The refolding activity of the yeast heat shock proteins Ssa1 and Ssa2 defines their role in protein translocation. J Cell Biol 135:1229–1237. doi: 10.1083/jcb.135.5.1229 CrossRefPubMedGoogle Scholar
  5. Cazalé AC, Clément M, Chiarenza S, Roncato MA, Pochon N, Creff A, Marin E, Leonhardt N, Noël LD (2009) Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. J Exp Bot 60:2653–2664. doi: 10.1093/jxb/erp109 CrossRefPubMedGoogle Scholar
  6. Cho EK, Hong CB (2006) Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Rep 25:349–358. doi: 10.1007/s00299-005-0093-2 CrossRefPubMedGoogle Scholar
  7. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16:735–743. 10.1046/j.1365-313x.1998.00343.xGoogle Scholar
  8. Deng Y, Zhan Z, Tang X, Ding L, Duan D (2015) Molecular cloning and characterization of an Hsp70 gene from the bloom green alga Chaetomorpha valida (Cladophorales, Chlorophyta). J Appl Phycol 27:489–497. doi: 10.1007/s10811-014-0313-7 CrossRefGoogle Scholar
  9. Duan YH, Guo J, Ding K, Wang SJ, Zhang H, Dai XW, Chen YY, Govers F, Huang LL, Kang ZS (2011) Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol Biol Rep 38:301–307. doi: 10.1007/s11033-010-0108-0 CrossRefPubMedGoogle Scholar
  10. Fu W, Yao J, Wang X, Liu F, Fu G, Duan D (2009) Molecular Cloning and Expression Analysis of a Cytosolic Hsp70 gene from Laminaria japonica (Laminariaceae, Phaeophyta). Mar Biotechnol 11:738–747. doi: 10.1007/s10126-009-9188-z CrossRefPubMedGoogle Scholar
  11. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. doi: 10.1038/nature10317 CrossRefPubMedGoogle Scholar
  12. He Z, Xie R, Wang Y, Zou H, Zhu J, Yu G (2008) Cloning and characterization of a heat shock protein 70 gene, MsHSP70-1, in Medicago sativa. Acta Biochim Biophys Sin 40:209–216. doi: 10.1111/j.1745-7270.2008.00394.x CrossRefPubMedGoogle Scholar
  13. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi: 10.1016/0003-9861(68)90654-1 CrossRefPubMedGoogle Scholar
  14. Hu X, Liu R, Li Y, Wang W, Tai F, Xue R, Li C (2010) Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul 60:225–235. doi: 10.1007/s10725-009-9436-2 CrossRefGoogle Scholar
  15. Johnston RN, Kucey BL (1988) Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242:1551–1554. doi: 10.1126/science.3201244 CrossRefPubMedGoogle Scholar
  16. Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H, Terauchi R (2003) Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to pseudomonas cichorii in nicotiana benthamiana. Mol Plant Pathol 4:383–391. doi: 10.1046/j.1364-3703.2003.00186.x CrossRefPubMedGoogle Scholar
  17. Kim SR, An G (2013) Rice chloroplast-localized heat shock protein 70, OsHsp70CP1, is essential for chloroplast development under high-temperature conditions. J Plant Physiol 170:854–863. doi: 10.1016/j.jplph.2013.01.006 CrossRefPubMedGoogle Scholar
  18. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi: 10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  19. Latijnhouwers M, Xu XM, Møller SG (2010) Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta 232:567–578. doi: 10.1007/s00425-010-1192-z CrossRefPubMedGoogle Scholar
  20. Lee S, Lee DW, Lee Y, Mayer U, Stierhof Y-D, Lee S, Jürgens G, Hwang I (2009) Heat shock protein cognate 70–4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21:3984–4001. doi: 10.1105/tpc.109.071548 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li QB, Haskell DW, Guy CL (1999) Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Mol Biol 39:21–34. doi: 10.1023/A:1006100532501 CrossRefPubMedGoogle Scholar
  22. Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6:201–208. doi: 10.1379/1466-1268(2001)006<0201:GAOTHS>2.0.CO;2 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Matysik J, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science 82:525–532Google Scholar
  24. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684. doi: 10.1007/s00018-004-4464-6 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Nicolás C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665. doi: 10.1016/j.jplph.2009.11.012 CrossRefPubMedGoogle Scholar
  26. Panthee DR, Yuan JS, Wright DL, Marois JJ, Mailhot D, Stewart CN Jr (2007) Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage. Funct Integr Genomics 7:291–301. doi: 10.1007/s10142-007-0045-8 CrossRefPubMedGoogle Scholar
  27. Renner T, Waters ER (2007) Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes. Cell Stress Chaperones 12:172–185. doi: 10.1379/CSC-230R1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66:361–378. doi: 10.1007/s11103-007-9274-4 CrossRefPubMedGoogle Scholar
  29. Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178. doi: 10.1105/tpc.11.6.1165 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Shi LX, Theg SM (2010) A stromal heat shock protein 70 system functions in protein import into chloroplasts in the Moss Physcomitrella patens. Plant Cell 22:205–220. doi: 10.1105/tpc.109.071464 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Stevens SY, Cai S, Pellecchia M, Zuiderweg ER (2003) The solution structure of the bacterial HSP70 chaperone protein domain DnaK(393–507) in complex with the peptide NRLLLTG. Protein Sci 12:2588–2596. doi: 10.1110/ps.03269103 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6 A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415. doi: 10.1046/j.1365-313X.2001.01107.x CrossRefPubMedGoogle Scholar
  33. Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol 132:979–987. doi: 10.1104/pp.102.019398 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis hsp70 gene family. Plant Physiol 126:789–800. doi: 10.1104/pp.126.2.789 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411. doi: 10.1016/j.jprot.2008.07.005 CrossRefPubMedGoogle Scholar
  36. Torisky R, Fellers JP, Collins GB (1996) A focusing device for tissue transformation with the DuPont/BioRad PDS1000 helium microprojectile system. Plant Mol Biol Rep 14:124–133. doi: 10.1007/Bf02684901 CrossRefGoogle Scholar
  37. Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366. doi: 10.1007/BF02180062 CrossRefGoogle Scholar
  38. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. doi: 10.1016/j.tplants.2004.03.006 CrossRefPubMedGoogle Scholar
  39. Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472 doi:10.1016/j.jplph.2004.09.009CrossRefPubMedGoogle Scholar
  40. Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Zhenyi Li
    • 1
  • Ruicai Long
    • 1
  • Tiejun Zhang
    • 1
  • Zhen Wang
    • 1
  • Fan Zhang
    • 1
  • Qingchuan Yang
    • 1
  • Junmei Kang
    • 1
  • Yan Sun
    • 2
  1. 1.Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.College of Animal Science and TechnologyChina Agriculture UniversityBeijingPeople’s Republic of China

Personalised recommendations