Skip to main content
Log in

A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Members of the HSP70 family function as molecular chaperones to maintain cellular homeostasis and help plants cope with environmental stimuli. However, due to functional redundancy and lack of effective chemical inhibitors, our knowledge of functions of individual HSP70s has remained limited. Here, we confirmed a subclass of HSP70s, including HSP70-1, -2, -3, -4, and -5, localized to the cytosol and nucleus in Arabidopsis thaliana. Histochemical analyses of promoter:GUS reporter lines showed that HSP70-1, -2, -3, and -4 genes were widely expressed, but HSP70-5 was not. In addition, individual HSP70 showed not only similar but also distinct transcriptions when treated by different abiotic stresses and phytohormones. No apparent phenotype was observed when individual HSP70 genes were overexpressed or knocked-out/down, but the double mutant hsp70-1 hsp70-4 and triple mutant hsp70-2 hsp70-4 hsp70-5 plants exhibited developmental phenotypes with shortened specific growth periods, curly and round leaves, twisted petioles, thin stems, and short siliques. Moreover, both mutants were hypersensitive to heat, cold, high glucose, salt and osmotic stress, but hyposensitive to abscisic acid. Genes related to flowering, and the cytokinin, brassinosteroid, and abscisic acid signaling pathways were differentially expressed in both mutants. Our studies suggest that, the individual HSP70 possibly performs both redundant and specific functions with the other members in the cytosolic/nuclear HSP70 subclass, and apart from enabling plants to cope with abiotic stresses, this subclass of cytosolic/nuclear HSP70 proteins also participates in diverse developmental processes and signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Aparicio F, Thomas CL, Lederer C, Niu Y, Wang D, Maule AJ (2005) Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant cytosol. Plant Physiol 138:529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma:1–14

  • Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    Article  CAS  PubMed  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazalé A-C, Clément M, Chiarenza S, Roncato M-A, Pochon N, Creff A, Marin E, Leonhardt N, Noël LD (2009) Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. J Exp Bot 60:2653–2664

    Article  PubMed  Google Scholar 

  • Clément M, Leonhardt N, Droillard M-J, Reiter I, Montillet J-L, Genty B, Laurière C, Nussaume L, Noël LD (2011) The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol 156:1481–1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Golding GB (1993) Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol 37:573–582

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    Article  CAS  PubMed  Google Scholar 

  • Jackson-Constan D, Keegstra K (2001) Arabidopsis genes encoding components of the chloroplastic protein import apparatus. Plant Physiol 125:1567–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi N (1996) Isolation and responses to stress of a gene that encodes a luminal binding protein in Arabidopsis thaliana. Plant Cell Physiol 37:862–865

    Article  CAS  PubMed  Google Scholar 

  • Latijnhouwers M, Xu X-M, Møller SG (2010) Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta 232:567–578

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Tsai F (2005) Molecular chaperones in protein quality control. J Biochem Mol Biol 38:259–265

    CAS  PubMed  Google Scholar 

  • Lee S, Lee DW, Lee Y, Mayer U, Stierhof Y-D, Lee S, Jürgens G, Hwang I (2009) Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21:3984–4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Jung JH, Park CM (2015) INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis. Plant J 84:29–40

    Article  CAS  PubMed  Google Scholar 

  • Lin B-L, Wang J-S, Liu H-C, Chen R-W, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperon 6:201

    Article  CAS  Google Scholar 

  • Maikova A, Zhanneta, Zalutskaya, Lapina T, Ermilova E (2016) The HSP70 chaperone machines of Chlamydomonas are induced by cold stress. J Plant Physiol 204:85–91

    Article  CAS  PubMed  Google Scholar 

  • Maruyama D, Sugiyama T, Endo T, Nishikawa S-i (2014) Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness. Plant Cell Physiol 55:801–810

    Article  CAS  PubMed  Google Scholar 

  • Maruyama D, Endo T, Nishikawa S-i (2015) BiP3 supports the early stages of female gametogenesis in the absence of BiP1 and BiP2 in Arabidopsis thaliana. Plant Signal Behav 10:e1035853

    PubMed  PubMed Central  Google Scholar 

  • Masand S, Yadav SK (2015) Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 43:1–12

    Google Scholar 

  • Mayer M, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina J, Catalá R, Salinas J (2011) The CBFs: three Arabidopsis transcription factors to cold acclimate. Plant Sci 180:3–11

    Article  CAS  PubMed  Google Scholar 

  • Noël LD, Cagna G, Stuttmann J, Wirthmüller L, Betsuyaku S, Witte C-P, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076

    Article  PubMed  PubMed Central  Google Scholar 

  • Noguchi T, Fujioka S, Takatsuto S, Sakurai A, Yoshida S, Li J, Chory J (1999) Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5α-cholestan-3-one in brassinosteroid biosynthesis. Plant Physiol 120:833–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MY, Kim SY (2014) The Arabidopsis J protein AtJ1 is essential for seedling growth, flowering time control and ABA response. Plant Cell Physiol 55:2152–2163

    Article  CAS  PubMed  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. Bioessays 26:363–373

    Article  CAS  PubMed  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Srivastava R, Deng Y, Shah S, Rao AG, Howell SH (2013) BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell 25:1416–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su P-H, Li H-m (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su P-H, Li H-m (2010) Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell 22:1516–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol 132:979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung DY, Kaplan F, Guy CL (2001a) Plant Hsp70 molecular chaperones: protein structure, gene family, expression and function. Physiol Plant 113:443–451

  • Sung DY, Vierling E, Guy CL (2001b) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126:789–800

  • Tang T, Yu A, Ping L, Hong Y, Liu G, Li L (2016) Sequence analysis of the Hsp70 family in moss and evaluation of their functions in abiotic stress responses. Sci Rep 6:33650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14:301–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Biol 42:579–620

    Article  CAS  Google Scholar 

  • Wang X, Yan B, Min S, Wei Z, Zekria D, Wang H, Kai G (2015) Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma 253:1–9

    Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S-H, Wang C, Chen J, Lin B-L (1994) Isolation of a cDNA encoding a 70 kDa heat-shock cognate protein expressed in vegetative tissues of Arabidopsis thaliana. Plant Mol Biol 25:577–583

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Liu J, Dong X, Cai Z, Tian W, Wang X (2014) Short-term and continuing stresses differentially interplay with multiple hormones to regulate plant survival and growth. Mol Plant 7:841–855

    Article  CAS  PubMed  Google Scholar 

  • Yer EN, Baloglu MC, Ziplar UT, Ayan S, Unver T (2016) Drought-responsive Hsp70 gene analysis in Populus at genome-wide level. Plant Mol Biol Rep 34:483–500

    Article  CAS  Google Scholar 

  • Yin Y, Wang Z-Y, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-P, Glaser E (2002) Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends Plant Sci 7:14–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Arabidopsis Biological Resource Center at Ohio State University for providing T-DNA insertion mutants. We are also thankful for help from Mengran Yang and Yangbin Gao in scientific writing. This work was supported by the National Basic Research Program of China (Grant Number 31371231 to W.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Su.

Additional information

L. Leng and Q. Liang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1838 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, L., Liang, Q., Jiang, J. et al. A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana . J Plant Res 130, 349–363 (2017). https://doi.org/10.1007/s10265-016-0900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0900-6

Keywords

Navigation