Advertisement

Journal of Plant Research

, Volume 130, Issue 2, pp 263–271 | Cite as

Genetic structure of Hepatica nobilis var. japonica, focusing on within population flower color polymorphism

  • Shinichiro Kameoka
  • Hitoshi Sakio
  • Harue Abe
  • Hajime Ikeda
  • Hiroaki Setoguchi
Regular Paper

Abstract

How phenotypic or genetic diversity is maintained in a natural habitat is a fundamental question in evolutionary biology. Flower color polymorphism in plants is a common polymorphism. Hepatica nobilis var. japonica on the Sea of Japan (SJ) side of the Japanese mainland exhibits within population flower color polymorphism (e.g., white, pink, and purple), while only white flowers are observed on the Pacific Ocean (PO) side. To determine the relationships between flower color polymorphism, within and among populations, and the genetic structure of H. nobilis var. japonica, we estimated the genetic variation using simple sequence repeat (SSR) markers. First, we examined whether cryptic lineages corresponding to distinct flower colors contribute to the flower color polymorphisms in H. nobilis var. japonica. In our field observations, no bias in color frequency was observed among populations on Sado Island, a region with high variation in flower color. Simple sequence repeat (SSR) analyses revealed that 18% of the genetic variance was explained by differences among populations, whereas no genetic variation was explained by flower color hue or intensity (0% for both components). These results indicate that the flower color polymorphism is likely not explained by cryptic lineages that have different flower colors. In contrast, populations in the SJ and PO regions were genetically distinguishable. As with the other plant species in these regions, refugial isolation and subsequent migration history may have caused the genetic structure as well as the spatially heterogeneous patterns of flower color polymorphisms in H. nobilis var. japonica.

Keywords

AMOVA Flower color polymorphism Hepatica Microsatellite Ranunculaceae STRUCTURE 

Supplementary material

10265_2016_893_MOESM1_ESM.pdf (95 kb)
Supplementary material 1 (PDF 95 KB)

References

  1. Arista M, Talavera M, Berjano R, Ortiz PL (2013) Abiotic factors may explain the geographical distribution of flower colour morphs and the maintenance of colour polymorphism in the scarlet pimpernel. J Ecol 101:1613–1622CrossRefGoogle Scholar
  2. Campbell DR, Waser NM, Melaendez-Ackerman EJ (1997) Analyzing pollinator-mediated selection in a plant hybrid zone: hummingbird visitation patterns on three spatial scales. Am Nat 149:295–315CrossRefGoogle Scholar
  3. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  4. Cornuet J-M, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  5. Crow JF (1986) Basic concepts in population, quantitative, and evolutionary genetics. W. H. Freeman and Company, New YorkGoogle Scholar
  6. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from plant tissue. Focus 12:13–15Google Scholar
  7. Edgar A (1936) Color variation in eastern north American flowers as exemplified by Hepatica actiloba. Rhodora 38:301–304Google Scholar
  8. Frey FM (2004) Opposing natural selection herbivores and pathogens may maintain floral-color variation in Claytonia Virginica (Portulacaneae). Evolution 58:2426–2437CrossRefPubMedGoogle Scholar
  9. Frey FM (2007) Phenotypic integration and the potential for independent color evolution in a polymorphic spring ephemeral. Am J Bot 94:437–444CrossRefPubMedGoogle Scholar
  10. Fu DZ, Zhu GH (2001) Ranunculaceae L. In: Wu ZY, Raven P (eds) Flora of China, vol. 6. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, p 328Google Scholar
  11. Futuyma DJ (2013) Evolution. Sinauer Associates, SunderlandGoogle Scholar
  12. Gigord LDB, Rausher MD, Smithson A (2001) Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soò. PNAS 98:6253–6255CrossRefPubMedPubMedCentralGoogle Scholar
  13. Goudet J (1995) FSTAT: A computer program to calculate F statics, version 1.2. J Hered 86:485–486CrossRefGoogle Scholar
  14. Horovitz A (1976) Edaphic factors and flower colour in the Anemoneae (Ranunculaceae). Plant Syst Evol 126:239–242CrossRefGoogle Scholar
  15. Jacobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefGoogle Scholar
  16. Jones KN, Reithel JS (2001) Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). Am J Bot 88:447–454CrossRefGoogle Scholar
  17. Kalinowski ST (2005) HP-RARE 1 0: a computer program for performing arefaction on measures of allelic richness. Mol Ecol Notes 7:579–582Google Scholar
  18. Kameoka S, Higashi H, Setoguchi H (2015) Development of polymorphic microsatellite loci in the perennial herb Hepatica nobilis var. japonica (Ranunculaceae). Appl Plant Sci. doi: 10.3732/apps.1400114 PubMedPubMedCentralGoogle Scholar
  19. Lande R (1975) The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res Camb 26:221–235CrossRefGoogle Scholar
  20. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. Herdity 89:238–247CrossRefGoogle Scholar
  21. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. 2. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689PubMedPubMedCentralGoogle Scholar
  22. Masel J, King OD, Maufhan H (2007) The loss of adaptive plasticity during long periods of environmental stasis. Am Nat 169:38–46CrossRefPubMedGoogle Scholar
  23. Matsumura S, Yokoyama J, Fukuda T, Maki M (2009) Origin of the disjunct distribution of flower colour polymorphism within Limonium wrightii (Plumbaginaceae) in the Ryukyu Archipelago. Biol J Linn Soc 97:709–717CrossRefGoogle Scholar
  24. Meirmans PG, Tienderen PHV (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794CrossRefGoogle Scholar
  25. Moran NA (1992) The evolutionary maintenance of alternative phenotypes. Am Nat 139:971–989CrossRefGoogle Scholar
  26. Morgan MT, Schoen DJ (1997) Selection on reproductive characters: floral morphology in Asclepias syriaca. Heredity 79:433–441CrossRefGoogle Scholar
  27. Norton NA, Fernando MTR, Herlihy CR, Busch JW (2015) Reproductive character displacement shapes a spatially structured petal color polymorphism in Leavenworthia stylosa. Evolution 69:1191–1207CrossRefPubMedGoogle Scholar
  28. Ӧpik M, Moora M, Zobel M, Saks Ü, Wheatley R, Wright F, Daniell T (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876CrossRefGoogle Scholar
  29. Peakall R, Smouse PE (2012) GenAlEx: genetic analysis in Excel. Population genetic software for teaching and research-an update, version 6.5. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  30. Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size suing allele frequency data. Heredity 90:502–503CrossRefGoogle Scholar
  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  32. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/
  33. Rausher MD (2008) Evolutionary transitions in floral color. Int J Plant Sci 169:7–21CrossRefGoogle Scholar
  34. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  35. Schemske DW, Bierzychudek P (2001) Perspective: Evolution of flower color in the desert annual Lianthus parryae: Wright revisited. Evolution 55:1269–1282CrossRefPubMedGoogle Scholar
  36. Setoguchi H, Ohba H (1995) Phylogenetic relationships in Crossostylis inferred from restriction site variation of chloroplast DNA. J Plant Res 108:87–92CrossRefGoogle Scholar
  37. Subramaniam B, Rausher MD (2000) Balancing selection on a floral polymorphism. Evolution 54:691–695CrossRefPubMedGoogle Scholar
  38. Takahashi Y, Kawata M (2013) A comprehensive test for negative frequency-dependent selection. Pop Ecol 55:499–509CrossRefGoogle Scholar
  39. Takahashi Y, Takakura K, Kawata M (2015) Flower color polymorphism maintained by overdominant selection in Sisyrinchium sp. J Plant Res 128:933–939CrossRefPubMedGoogle Scholar
  40. Tani N, Maruyama K, Tomaru N, Uchida K, Araki M, Tsumura Y, Yoshimaru H, Ohba K (2003) Genetic diversity of nuclear and mitochondrial genomes in Pinus parviflora Sieb. & Zucc. (Pinaceae) populations. Herdity 91:510–518CrossRefGoogle Scholar
  41. Tsumura Y, Kado T, Takahashi T, Tani N, Ujino-Ihara T, Iwata H, Uchida K (2007) Genome scan to detect genetic structure and adaptive genes of natural populations of Cryptomeria japonica. Genetics 176:2393–2403CrossRefPubMedPubMedCentralGoogle Scholar
  42. Volkova PA, Schanzer IA (2013) Colour polymorphism in common primrose (Primula vulgaris Huds.): many colours-many species? Plant Syst Evol 299:1075–1087CrossRefGoogle Scholar
  43. Weiss-Schneeweiss H, Schneeweiss GM, Stuessy TF, Mabuchi T, Park J-M, Jang C-G, Sun B-Y (2007) Chromosomal stasis in diploids contrasts with genome restricting in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytol 174:669–682CrossRefPubMedGoogle Scholar
  44. Wessinger AC, Rausher MD (2012) Lessons from flower colour evolution on targets of selection. J Exp Bot 63:5741–5749CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Shinichiro Kameoka
    • 1
  • Hitoshi Sakio
    • 2
  • Harue Abe
    • 2
  • Hajime Ikeda
    • 3
  • Hiroaki Setoguchi
    • 1
  1. 1.Dept of Biology, Graduate School of Human and Environmental StudiesKyoto UniversitySakyokuJapan
  2. 2.Sado Station, Field center for sustainable agriculture and forestry, Faculty of agricultureNiigata UniversitySadoJapan
  3. 3.Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan

Personalised recommendations