Journal of Plant Research

, Volume 129, Issue 5, pp 921–933 | Cite as

Heterologous expression of the Hsp24 from Trichoderma asperellum improves antifungal ability of Populus transformant Pdpap-Hsp24 s to Cytospora chrysosperma and Alternaria alternate

  • S. D. Ji
  • Z. Y. Wang
  • H. J. Fan
  • R. S. Zhang
  • Z. Y. Yu
  • J. J. Wang
  • Z. H. Liu
Regular Paper


The tolerance of plants to biotic and abiotic stresses could be improved by transforming with fungal resistance-related genes. In this study, the cDNA sequence (GenBank Acc. No. KP337939) of the resistance-related gene Hsp24 encoding the 24 kD heat shock protein was obtained from the biocontrol fungus Trichoderma asperellum ACCC30536. The promoter region of Hsp24 contained many cis-regulators related to stresses response, such as “GCN4” and “GCR1” etc. Hsp24 transcription in T. asperellum was up-regulated under six different environmental stresses, compared with the control. Furthermore, following heterologous transformation into Populus davidiana × P. alba var. Pyramidalis (Pdpap), Hsp24 was successfully transcribed in transformant Pdpap-Hsp24s. Pathogen-related genes (PRs) in four Pdpap-Hsp24s were up-regulated compared with those in the control Pdpap (Pdpap-Con). After co-culture of Pdpap-Hsp24s with the weak parasite Cytospora chrysosperma, the transcription of genes related to hormone signal pathway (JA and SA) were up-regulated in Pdpap-Hsp24s, and ethidium bromide (EtBr) and Nitro-blue tetrazolium (NBT) staining assays indicated that the cell membrane permeability and the active oxygen content of Pdpap-Hsp24s leaves were lower than that of the control Pdpap-Con. And when the Pdpap-Hsp24s were under the Alternaria alternate stress, the activities of superoxide dismutase (SOD) and peroxidase (POD) got higher in Pdpap-Hsp24s than that in Pdpap-Con, and the disease spots in Pdpap-Con leaves were obviously larger than those in Pdpap-Hsp24s leaves. In summary, Hsp24 of T. asperellum ACCC30536 is an important defense response gene, and its heterologous expression improved the resistance of transformant Pdpap-Hsp24s to C. chrysosperma and A. alternate.


Populus Trichoderma asperellum Heat shock protein Plant transgene Antifungus 



This work was supported by grants from the National High Technology Research and Development Program (863 Program) (2013AA102701) and the Natural Science foundation of Heilongjiang Province of China (QC2011C003) and the Fundamental Research Funds for the Central Universities (2572014CA11).

Supplementary material

10265_2016_829_MOESM1_ESM.doc (69 kb)
Supplementary material 1 (DOC 69 kb)


  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barcala M, Garcia A, Cubas P, Almoguera C, Jordano J, Fenoll C, Escobar C (2008) Distinct heat-shock element arrangements that mediate the heat shock, but not the late-embryogenesis induction of small heat-shock proteins, correlate with promoter activation in root-knot nematode feeding cells. Plant Mol Biol 66:151–164CrossRefPubMedGoogle Scholar
  3. Biely P, Puchart V, Stringer MA, Kr KBRM (2014) Trichoderma reesei XYN VI—a novel appendage-dependent eukaryotic glucuronoxylan hydrolase. FEBS J 281(17):3894–3903CrossRefPubMedGoogle Scholar
  4. Böckenhoff A, Prior DAM, Grundler FMW, Oparka KJ (1996) Induction of phloem unloading in Arabidopsis thaliana roots by the parasitic nematode Heterodera schachtii. Plant Physiol 112:1421–1427CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boter M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, Moore G, Kleanthous C, Ochsenbein F, Shirasu K, Guerois R (2007) Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19:3791–3804CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451CrossRefPubMedGoogle Scholar
  7. Cho EK, Hong CB (2006) Over-expression of tobacco NtHSP70-1 contributes to drought- stress tolerance in plants. Plant Cell Rep 25:349–358CrossRefPubMedGoogle Scholar
  8. Chopra R, Saini R (2014) Transformation of blackgram (Vigna mungo (L.) Hepper) by barley chitinase and ribosome-inactivating protein genes towards improving resistance to corynespora leaf spot fungal disease. Appl Biochem Biotechnol 174:2791–2800CrossRefPubMedGoogle Scholar
  9. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759CrossRefPubMedGoogle Scholar
  10. Duan Y, Jiang YZ, Ye SL, Karim A, Ling ZY, He YQ, Yang SQ, Luo KM (2015) PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. PLANT CELL REP 34(5) 831–841Google Scholar
  11. Hanhong B (2011) Trichoderma Species as Abiotic and Biotic Stress Quenchers in Plants. Res J Biotechnol 6(3):73–79Google Scholar
  12. Hexon ACC, Lourdes MR, Carlos CP, Jose LB (2009) Trichoderma virens, a plant Beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592CrossRefGoogle Scholar
  13. Huang Y, Liu H, Jia ZC, Fang Q, Luo KM (2012) Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens. Tree Physiol 32:1313–1320CrossRefPubMedGoogle Scholar
  14. Huang Y, Mijiti G, Wang ZY, Yu WJ, Fan HJ, Zhang RS, Liu ZH (2015) Functional analysis of the class II hydrophobin gene HFB2-6 from thebiocontrol agent Trichoderma asperellum ACCC30536. Microbiol Res 171:8–20CrossRefPubMedGoogle Scholar
  15. Jordi FM, Massimo Z, Georgina E, Beatriz FM, Isabel F (2013) Effect of environmental stress factors on ecophysiological traits and susceptibility to pathogens of five Populus clones throughout the growing season. Tree Physiol 33:618–627CrossRefGoogle Scholar
  16. Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biot 98:533–544CrossRefGoogle Scholar
  17. Kim DH, Xu ZY, Hwang I (2013) AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. Plant Cell Rep 32:1953–1963CrossRefPubMedGoogle Scholar
  18. Koo AJ, Gao X, Jones AD, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–986CrossRefPubMedGoogle Scholar
  19. Liao XG, Lu HL, Fang WG, Raymond JSL (2014) Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Appl Microbiol Biot 98:777–783CrossRefGoogle Scholar
  20. Liu ZH, Yang Q, Ma J (2007) A heat shock protein gene (hsp22.4) from Chaetomium globosum confers heat and Na2CO3 tolerance to yeast. Appl Microbiol Biot 77:901–908CrossRefGoogle Scholar
  21. Liu ZH, Yang XX, Sun DM, Song JZ, Chen G, Juba O, Yang Q (2010) Expressed sequence tags-based identification of genes in a biocontrol strain Trichoderma asperellum. Mol Biol 37:3673–3681Google Scholar
  22. Liu Z, Zhang SM, Sun N, Liu HY, Zhao YH, Liang YL, Zhang LP, Han YH (2015) Functional diversity of jasmonates in rice. Rice 8:5CrossRefPubMedCentralGoogle Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  24. Lu Y, Li YJ, Zhang JC, Xiao YT, Yue YS, Duan LS, Zhang MC, Li ZH (2013) Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.). PLoS ONE 8(1):e52126CrossRefPubMedPubMedCentralGoogle Scholar
  25. Marré MT, Vergani P, Albergoni FG (1993) Relationship between fusaric acid uptake and its binding to cell structure in leaves of Egeria densa and its toxic effects on membrane permeability and respiration. Physiol Mol Plant Pathol 42:141–145CrossRefGoogle Scholar
  26. Montero-Barrientos M, Cardoza RE, Gutierrez S, Monte E, Hermosa R (2007) The heterologous overexpression of hsp23, a small heat-shock protein gene from Trichoderma virens, confers thermotolerance to T. harzianum. Curr Genet 52:45–53CrossRefPubMedGoogle Scholar
  27. Montero-Barrientos M, Hermosa R, Nicolas C, Cardoza RE, Gutierrez S, Monte E (2008) Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genet Biol 45:1506–1513CrossRefPubMedGoogle Scholar
  28. Montero-Barrientos M, Hermosa R, E.Cardoza R, SantiagoGutierrez, Carlos Nicolas, EnriqueMonte (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665Google Scholar
  29. Mou ZL, Fan WH, Dong XN (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944CrossRefPubMedGoogle Scholar
  30. Petre B, Saunders DGO, Sklenar J, Lorrain C, Win J, Duplessis S, Kamoun S (2015) Candidate effector proteins of the rust pathogen Melampsora larici-populina target diverse plant cell compartments. Mol Plant Microbe In 28(6):689–700CrossRefGoogle Scholar
  31. Pietrowska E, Różalska S, Kaźmierczak A, Nawrocka J, Małolepsza U (2015) Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures—Botrytis cinerea Interaction. Protoplasma 252:307–319CrossRefPubMedGoogle Scholar
  32. Qian J, Chen J, Liu YF, Yang LL, Li WP, Zhang LM (2014) Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression. Genet Mol Res 13(1):1233–1243CrossRefPubMedGoogle Scholar
  33. Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol 8(1):86–92CrossRefPubMedGoogle Scholar
  34. Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genom 10:393CrossRefGoogle Scholar
  35. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  36. Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, Newman MA, Parrilli M (2005) The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. Biol Chem 280:33660–33668CrossRefGoogle Scholar
  37. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126:789–800CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vaughan A, Angharad MR, Suzanne E, Richard F, Donald B (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163CrossRefGoogle Scholar
  40. Wang M, Ling N, Dong X, Liu XK, Shen QR, Guo SW (2014) Effect of fusaric acid on the leaf physiology of cucumber seedlings. Eur J Plant Pathol 138:103–112CrossRefGoogle Scholar
  41. Wang YL, Lu Q, Decock C, Li YX, Zhang XY (2015) Cytospora species from Populus and Salix in China with C. davidiana sp nov. Fungal Biol 119(5):420–432CrossRefPubMedGoogle Scholar
  42. Yang LM, Yang Q, Liu PG, Li S (2008) Expression of the HSP24 gene from Trichoderma harzianum in Saccharomyces cerevisiae. J Therm Biol 33:1–6CrossRefGoogle Scholar
  43. Yang QZ, Zhang ZK, Rao JP, Wang YP, Sun ZY, Ma QS, Dong XQ (2013) Low-temperature conditioning induces chilling tolerance in ‘Hayward’ kiwifruit by enhancing antioxidant enzyme activity and regulating en-dogenous hormones levels. J Sci Food Agric 93:3691–3699CrossRefPubMedGoogle Scholar
  44. Ye S, Jiang Y, Duan Y, Karim A, Fan D, Yang L, Zhao X, Yin J, Luo K (2014) Constitutive expression of the poplar WRKY transcription factor PtoWRKY60 enhances resistance to Dothiorella gregaria Sacc. in transgenic plants. Tree Physiol 34(10):1118–1129CrossRefPubMedGoogle Scholar
  45. Zhang LQ, Niu YD, Huridu H, Hao JF, Qi Z, Hasi A (2014) Salicornia europaea L. Na +/H + antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.). Genet Mol Res 13(3):5350–5360CrossRefPubMedGoogle Scholar
  46. Zhuo RY, Qiao GR, Sun ZX (2007) Transgene expression in Chinese sweetgum driven by the salt induced expressed promoter. Plant Cell Tiss Organ Cult 88:101–107CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • S. D. Ji
    • 1
  • Z. Y. Wang
    • 1
  • H. J. Fan
    • 1
  • R. S. Zhang
    • 2
  • Z. Y. Yu
    • 1
  • J. J. Wang
    • 1
  • Z. H. Liu
    • 1
  1. 1.School of ForestryNortheast Forestry UniversityHarbinChina
  2. 2.The College of LandscapeNortheast Forestry UniversityHarbinChina

Personalised recommendations