Journal of Plant Research

, Volume 129, Issue 4, pp 711–726 | Cite as

Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray

  • Yoshinori Utsumi
  • Maho Tanaka
  • Atsushi Kurotani
  • Takuhiro Yoshida
  • Keiichi Mochida
  • Akihiro Matsui
  • Manabu Ishitani
  • Supajit Sraphet
  • Sukhuman Whankaew
  • Thipa Asvarak
  • Jarunya Narangajavana
  • Kanokporn Triwitayakorn
  • Tetsuya Sakurai
  • Motoaki Seki
Regular Paper


Cassava anthracnose disease (CAD), caused by the fungus Colletotrichum gloeosporioides f. sp. Manihotis, is a serious disease of cassava (Manihot esculenta) worldwide. In this study, we established a cassava oligonucleotide-DNA microarray representing 59,079 probes corresponding to approximately 30,000 genes based on original expressed sequence tags and RNA-seq information from cassava, and applied it to investigate the molecular mechanisms of resistance to fungal infection using two cassava cultivars, Huay Bong 60 (HB60, resistant to CAD) and Hanatee (HN, sensitive to CAD). Based on quantitative real-time reverse transcription PCR and expression profiling by the microarray, we showed that the expressions of various plant defense-related genes, such as pathogenesis-related (PR) genes, cell wall-related genes, detoxification enzyme, genes related to the response to bacterium, mitogen-activated protein kinase (MAPK), genes related to salicylic acid, jasmonic acid and ethylene pathways were higher in HB60 compared with HN. Our results indicated that the induction of PR genes in HB60 by fungal infection and the higher expressions of defense response-related genes in HB60 compared with HN are likely responsible for the fungal resistance in HB60. We also showed that the use of our cassava oligo microarray could improve our understanding of cassava molecular mechanisms related to environmental responses and development, and advance the molecular breeding of useful cassava plants.


Cassava Cassava anthracnose disease Detoxification Disease resistance Transcriptome 



This work was supported by the Japan Science and Technology Agency (JST) and the National Science and Technology Development Agency of Thailand (Grant No.P12-01382) under the East Asia Science and Innovation Area Joint Research Program (e-ASIA JRP). This research was also supported by the Strategic Funds for the Promotion of Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; RIKEN Center for Sustainable Resource Science (CSRS); and CREST, JST, Japan. JN and KT were supported by the National Science and Technology Development Agency, Thailand, (Grant No. P-12-01382), under the East Asia Science and Innovation Area Joint Research Program (e-ASIA JRP).

Supplementary material

10265_2016_828_MOESM1_ESM.pdf (5.1 mb)
Supplementary material 1 (PDF 5199 kb)
10265_2016_828_MOESM2_ESM.xlsx (17 kb)
Supplementary material 2 (XLSX 17 kb)
10265_2016_828_MOESM3_ESM.xlsx (14 kb)
Supplementary material 3 (XLSX 13 kb)
10265_2016_828_MOESM4_ESM.xlsx (90 kb)
Supplementary material 4 (XLSX 90 kb)
10265_2016_828_MOESM5_ESM.xlsx (138 kb)
Supplementary material 5 (XLSX 137 kb)
10265_2016_828_MOESM6_ESM.xlsx (419 kb)
Supplementary material 6 (XLSX 419 kb)
10265_2016_828_MOESM7_ESM.xlsx (77 kb)
Supplementary material 7 (XLSX 76 kb)
10265_2016_828_MOESM8_ESM.xlsx (112 kb)
Supplementary material 8 (XLSX 112 kb)
10265_2016_828_MOESM9_ESM.xlsx (431 kb)
Supplementary material 9 (XLSX 430 kb)
10265_2016_828_MOESM10_ESM.xlsx (50 kb)
Supplementary material 10 (XLSX 49 kb)
10265_2016_828_MOESM11_ESM.xlsx (18 kb)
Supplementary material 11 (XLSX 18 kb)
10265_2016_828_MOESM12_ESM.xlsx (37 kb)
Supplementary material 12 (XLSX 36 kb)
10265_2016_828_MOESM13_ESM.xlsx (34 kb)
Supplementary material 13 (XLSX 34 kb)
10265_2016_828_MOESM14_ESM.xlsx (56 kb)
Supplementary material 14 (XLSX 56 kb)
10265_2016_828_MOESM15_ESM.xlsx (60 kb)
Supplementary material 15 (XLSX 60 kb)
10265_2016_828_MOESM16_ESM.xlsx (318 kb)
Supplementary material 16 (XLSX 318 kb)
10265_2016_828_MOESM17_ESM.xlsx (46 kb)
Supplementary material 17 (XLSX 46 kb)
10265_2016_828_MOESM18_ESM.xlsx (15 kb)
Supplementary material 18 (XLSX 14 kb)
10265_2016_828_MOESM19_ESM.xlsx (28 kb)
Supplementary material 19 (XLSX 28 kb)
10265_2016_828_MOESM20_ESM.xlsx (30 kb)
Supplementary material 20 (XLSX 29 kb)
10265_2016_828_MOESM21_ESM.xlsx (45 kb)
Supplementary material 21 (XLSX 44 kb)
10265_2016_828_MOESM22_ESM.xlsx (48 kb)
Supplementary material 22 (XLSX 48 kb)
10265_2016_828_MOESM23_ESM.xlsx (351 kb)
Supplementary material 23 (XLSX 351 kb)
10265_2016_828_MOESM24_ESM.xlsx (18 kb)
Supplementary material 24 (XLSX 17 kb)
10265_2016_828_MOESM25_ESM.xlsx (25 kb)
Supplementary material 25 (XLSX 25 kb)


  1. Alvarez ME, Lamb C (1997) Oxidative Burst-mediated defense response in plant disease resistance. Cold Spring Harb Lab Press. doi: 10.1101/087969502.34.815 Google Scholar
  2. Allie F, Pierce EJ, Okoniewski MJ, Rey C (2014) Transcriptional analysis of South African cassava mosaic virus-infected susceptible and tolerant landraces of cassava highlights differences in resistance, basal defense and cell wall associated genes during infection. BMC Genom 15:1006. doi: 10.1186/1471-2164-15-1006 CrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Scháffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Awoleye F, Duren MV, Dolezel J, Novak FJ (1994) Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding. Euphytica 76:195–202. doi: 10.1007/BF00022164 CrossRefGoogle Scholar
  5. Asai S, Shirasu K (2015) Plant cells under siege: plant immune system versus pathogen effectors. Curr Opin Plant Biol 28:1–8. doi: 10.1016/j.pbi.2015.08.008 CrossRefPubMedGoogle Scholar
  6. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983. doi: 10.1038/415977a CrossRefPubMedGoogle Scholar
  7. Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454. doi: 10.1104/pp.108.12103 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 41:D991–D995. doi: 10.1093/nar/gks1193 CrossRefPubMedGoogle Scholar
  9. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300. doi: 10.2307/2346101 Google Scholar
  10. Bernoux M, Timmers T, Jauneau A, Briere C, de Wit PJ, Marco Y, Deslandes L (2008) RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell 20:2252–2264. doi: 10.1105/tpc.108.058685 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bolwell GP, Bindschedler LV, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376. doi: 10.1093/jexbot/53.372.1367 PubMedGoogle Scholar
  12. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956. doi: 10.1038/nbt.1674 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Charles AL, Sriroth K, Huang T (2005) Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chem 92:615–620. doi: 10.1016/j.foodchem.2004.08.024 CrossRefGoogle Scholar
  14. Cock JH (1982) Cassava: a basic energy source in the tropics. Science 218:755–762. doi: 10.1126/science.7134971 CrossRefPubMedGoogle Scholar
  15. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70. doi: 10.1093/nar/gkq310 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Durrant WE, Dong X (2006) Systemic acquired resistance. Anuual Rev Phytopath 42:185–209. doi: 10.1146/annurev.phyto.42.040803.140421 CrossRefGoogle Scholar
  17. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. doi: 10.1093/nar/30.1.207 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185. doi: 10.1101/gr.8.3.175 CrossRefPubMedGoogle Scholar
  19. Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Frontiers Plant Sci 4:1–9. doi: 10.3389/fpls.2013.00049 CrossRefGoogle Scholar
  20. Fokunang CN, Dixon AGO, Ikotun T, Akem CN, Tembe EA (2002) Rapid Screening Method of Cassava Cultivars for Resistance to Colletotrichum gloeosporioides f. sp. manihotis. J Phytopathol 150:6–12. doi: 10.1046/j.1439-0434.2002.00708.x CrossRefGoogle Scholar
  21. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar D (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. doi: 10.1093/nar/gkr944 CrossRefPubMedGoogle Scholar
  22. Guidarelli M, Carbone F, Mourgues F, Perrotta G, Rosati C, Bertolini P, Baraldi E (2011) Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Pathol 60:685–697. doi: 10.1111/j.1365-3059.2010.02423.x CrossRefGoogle Scholar
  23. Guo Y, Sheng Q, Li J, Ye F, Samuels DC, Shyr Y (2013) Large scale comparison of gene expression levels by microarray and RNAseq using TCGA data. PLoS One 8:e71462. doi: 10.1371/journal.pone.0071462 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hahn SK, Ikotun T, Theberge RL, Swennen R (1989a) Major economic diseases of cassava, plantains and cooking starchy bananas in Africa. Tropical Agriculture Research Center, Ministry of Agriculture, Forestry and Fisheries, JapanGoogle Scholar
  25. Hahn SK, Isoba JCG, Ikotun T (1989b) Resistance breeding in root and tuber crops at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. Crop Prot 8:147–168. doi: 10.1016/0261-2194(89)90022-7 CrossRefGoogle Scholar
  26. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877. doi: 10.1101/gr.9.9.868 CrossRefPubMedPubMedCentralGoogle Scholar
  27. IITA (1990) Cassava in Tropical Africa: a reference manual. International Institute of Tropical Agriculture, IITA, IbadanGoogle Scholar
  28. Joshi RK, Nayak S (2011) Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants. Genet Mol Res 10:2637–2652. doi: 10.4238/2011.October.25.10 CrossRefPubMedGoogle Scholar
  29. Karim S, Holmstrom KO, Mandal A, Dahl P, Hohmann S, Brader G, Palva ET, Pirhonen M (2007) AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta 225:1431–1445. doi: 10.1007/s00425-006-0451-5 CrossRefPubMedGoogle Scholar
  30. Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945. doi: 10.1073/pnas.97.6.2940 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kunkeaw S, Worapong J, Smith DR, Triwitayakorn K (2010) An in vitro detached leaf assay for pre-screening resistance to anthracnose disease in cassava (Manihot esculenta Crantz). Australia Plant Pathol 39:547–550. doi: 10.1071/AP10024 CrossRefGoogle Scholar
  32. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2012) The arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210. doi: 10.1093/nar/gkr1090 CrossRefPubMedGoogle Scholar
  33. Lee MW, Jelenska J, Greenberg JT (2008) Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. Plant J 54:452–465. doi: 10.1111/j.1365-313X.2008.03439.x CrossRefPubMedGoogle Scholar
  34. Lehman S, Serrano M, L’Haridon F, Tjiamos SE, Metraux J-P (2015) Reactive oxygen species and plant resistance to fungal pathogen. Phytochemistry 112:54–62. doi: 10.1016/j.phytochem.2014.08.027 CrossRefGoogle Scholar
  35. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331. doi: 10.1105/tpc.016980 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491. doi: 10.1111/j.1365-313X.2006.02712.x CrossRefPubMedGoogle Scholar
  37. Li Y-F, Wang Y, Tang Y, Kakani VG, Mahalingam R (2013) Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.). BMC Plant Biol 13:153–164. doi: 10.1186/1471-2229-13-153 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA, Kim R, Liu L, Hernandez A, Dixon AG, Ingelbrecht IL (2007) Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618. doi: 10.1007/s00299-007-0378-8 CrossRefPubMedGoogle Scholar
  39. Lopez C, Soto M, Restrepo S, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V (2005) Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Mol Biol 57:393–410. doi: 10.1007/s11103-004-7819-3 CrossRefPubMedGoogle Scholar
  40. Lozano JC, Bellotti AC, Reyes JA, Howland RH, Leihner D, Doll J (1981) Field Problems in Cassava, CIAT, Cali Colombia, 2nd ED, pp 16–25Google Scholar
  41. Mauricio R, Stahl EA, Korves T, Tian D, Kreitman M, Bergelson J (2003) Natural selection for polymorphism in the disease resistance Gene Rps2 of Arabidopsis thaliana. Genetics 163:735–746PubMedPubMedCentralGoogle Scholar
  42. Miedes E, Vanholme R, Boerjan W, Molina A (2014) The role of the secondary cell wall in plant resistance to pathogens. Frontiers Plant Sci 5:1–13. doi: 10.3389/fpls.2014.00358 CrossRefGoogle Scholar
  43. Miles TD, Day B, Schilder AC (2011) Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by Colletotrichum acutatum. Mol Plant Pathol 12:463–477. doi: 10.1111/j.1364-3703.2010.00687.x CrossRefPubMedGoogle Scholar
  44. Muimba-Kankolongo A, Adeniji MO, Terry ER (1983) Susceptibility of cassava to Colletotrichum manihotis. Triennial Root Crops Symposium, Tropical root crops: Production and uses in Africa, Cameroon, pp 82–85Google Scholar
  45. Narasimhan ML, Bressan RA, D’Urzo MP, Jenks MA, Mengiste T (2009) Chapter 11 unexpected turns and twists in structure/function of PR-proteins that connect energy metabolism and immunity. Adv Bot Res 51:439–489. doi: 10.1016/S0065-2296(09)51011-7
  46. Narusaka M, Kubo Y, Hatakeyama K, Imamura J, Ezura H, Nanasato Y, Tabei Y, Takano Y, Shirasu K, Narusaka Y (2013) Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens. PLoS One 8:e55954. doi: 10.1371/journal.pone.0055954 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360–D363. doi: 10.1093/nar/gkh099 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Park SC, Lee JR, Shin SO, Park Y, Lee SY, Hahm KS (2007) Characterization of a heat-stable protein with antimicrobial activity from Arabidopsis thaliana. Bioche Biophys Res Comm 362:562–567. doi: 10.1016/j.bbrc.2007.07.188 CrossRefGoogle Scholar
  49. Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94. doi: 10.1007/s12042-011-9088-z CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135. doi: 10.1093/nar/gkr1079 CrossRefPubMedGoogle Scholar
  51. Radauer C, Lackner P, Breiteneder H (2008) The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol 8:286. doi: 10.1186/1471-2148-8-286 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Reilly K, Bernal D, Cortes DF, Gomez-Vasquez R, Tohme J, Beeching JR (2007) Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol 64:187–203. doi: 10.1007/s11103-007-9144-0 CrossRefPubMedGoogle Scholar
  53. Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66. doi: 10.1186/1471-2229-7-66 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sakurai T, Mochida K, Yoshida T, Akiyama K, Ishitani M, Seki M, Shinozaki K (2013) Genome-wide discovery and information resource development of DNA polymorphisms in cassava. PLoS One 8:e74056. doi: 10.1371/journal.pone.0074056 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Salamov AA, Solovyev VV (2000) Ab initio gene finding in drosophila genomic DNA. Genome Res 10:516–522. doi: 10.1101/gr.10.4.516 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sato M, Mitra RM, Coller J, Wang D, Spivey NW, Dewdney J, Denoux C, Glazebrook J, Katagiri F (2007) A high-performance, small-scale microarray for expression profiling of many samples in Arabidopsis-pathogen studies. Plant J 49:565–577. doi: 10.1111/j.1365-313X.2006.02972.x CrossRefPubMedGoogle Scholar
  57. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinase: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444CrossRefPubMedPubMedCentralGoogle Scholar
  58. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. doi: 10.1038/nature08670 CrossRefPubMedGoogle Scholar
  59. Simon C, Langlois-Meurinne M, Didierlaurent L, Chaouch S, Bellvert F, Massoud K, Garmier M, Thareau V, Comte G, Noctor G, Saindrenan P (2014) The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato. Plant Cell Environ 37:1114–1129. doi: 10.1111/pce.12221 CrossRefPubMedGoogle Scholar
  60. Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100. doi: 10.1038/nri3141 CrossRefPubMedGoogle Scholar
  61. Tonukari NJ (2004) Cassava and the future of starch. Electron J Biotechnol 7:5–8. doi: 10.4067/S0717-34582004000100003 CrossRefGoogle Scholar
  62. Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378. doi: 10.1104/pp.106.079467 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J,egerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604.  10.1126/science.1128691
  64. Utsumi Y, Sakurai T, Umemura Y, Ayling S, Ishitani M, Narangajavana J, Sojikul P, Triwitayakorn K, Matsui M, Manabe R-I, Shinozaki K, Seki (2012a) RIKEN Cassava Initiative: establishment of a Cassava Functional Genomics Platform. Tropical Plant Biol 5:110–116.  10.1007/s12042-011-9089-y
  65. Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M (2012b) Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: an important tropical crop. DNA Res 19:335–345. doi: 10.1093/dnares/dss016 CrossRefPubMedPubMedCentralGoogle Scholar
  66. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. doi: 10.1146/annurev.phyto.44.070505.143425 CrossRefPubMedGoogle Scholar
  67. Vergne E, Grand X, Ballini E, Chalvon V, Saindrenan P, Tharreau D, Nottéghem J-L, Morel J-B (2010) Preformed expression of defense is a hallmark of partial resistance to rice blast fungal pathogen Magnaporthe oryzae. BMC Plant Biol 10:206. doi: 10.1186/1471-2229-10-206 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123. doi: 10.1371/journal.ppat.0020123 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wang Y, Zeng X, Peal L, Tang Y, Wu Y, Mahalingam R (2013) Transcriptome analysis of nodes and buds from high and low tillering switchgrass inbred lines. PLoS One 8:e83772. doi: 10.1371/journal.pone.0083772 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, Moller BL, Zhang P, Luo MC, Xiao G, Liu J, Yang J, Chen S, Rabinowicz PD, Chen X, Zhang HB, Ceballos H, Lou Q, Zou M, Carvalho LJ, Zeng C, Xia J, Sun S, Fu Y, Wang H, Lu C, Ruan M, Zhou S, Wu Z, Liu H, Kannangara RM, Jorgensen K, Neale RL, Bonde M, Heinz N, Zhu W, Wang S, Zhang Y, Pan K, Wen M, Ma PA, Li Z, Hu M, Liao W, Hu W, Zhang S, Pei J, Guo A, Guo J, Zhang J, Zhang Z, Ye J, Ou W, Ma Y, Liu X, Tallon LJ, Galens K, Ott S, Huang J, Xue J, An F, Yao Q, Lu X, Fregene M, Lopez-Lavalle LA, Wu J, You FM, Chen M, Hu S, Wu G, Zhong S, Ling P, Chen Y, Wang Q, Liu G, Liu B, Li K, Peng M (2014) Cassava genome from a wild ancestor to cultivated varieties. Nat Comm 5:5110. doi: 10.1038/ncomms6110 CrossRefGoogle Scholar
  71. Warren RF, Henk A, Mowery P, Holub E, Innesa RW (1998) A Mutation within the Leucine-Rich Repeat Domain of the Arabidopsis Disease Resistance Gene RPS5 Partially Suppresses Multiple Bacterial and Downy Mildew Resistance Genes. Plant Cell 10:1439–1452. doi: 10.1105/tpc.10.9.1439 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yang J, An D, Zhang P (2011) Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. J Integr Plant Biol 53:193–211. doi: 10.1111/j.1744-7909.2010.01018.x CrossRefPubMedGoogle Scholar
  73. Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trend Plant Sci 6:520–527. doi: 10.1016/S1360-1385(01)02103-3 CrossRefGoogle Scholar
  74. Zhao S, Fung-Leung W-P, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells. PLoS One 9:e78644. doi: 10.1371/journal.pone.0078644 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Yoshinori Utsumi
    • 1
  • Maho Tanaka
    • 1
  • Atsushi Kurotani
    • 2
  • Takuhiro Yoshida
    • 2
  • Keiichi Mochida
    • 3
    • 4
  • Akihiro Matsui
    • 1
  • Manabu Ishitani
    • 5
  • Supajit Sraphet
    • 6
  • Sukhuman Whankaew
    • 6
  • Thipa Asvarak
    • 7
  • Jarunya Narangajavana
    • 7
  • Kanokporn Triwitayakorn
    • 6
  • Tetsuya Sakurai
    • 2
    • 8
  • Motoaki Seki
    • 1
    • 9
    • 10
  1. 1.Plant Genomic Network Research TeamRIKEN Center for Sustainable Resource ScienceYokohamaJapan
  2. 2.Integrated Genome Informatics Research UnitRIKEN Center for Sustainable Resource ScienceYokohamaJapan
  3. 3.Gene Discovery Research GroupRIKEN Center for Sustainable Resource ScienceYokohamaJapan
  4. 4.Biomass Research Platform TeamRIKEN Biomass Engineering ProgramYokohamaJapan
  5. 5.Agrobiodiversity Research AreaInternational Center for Tropical Agriculture (CIAT)CaliColombia
  6. 6.Institute of Molecular BiosciencesMahidol UniversitySalayaThailand
  7. 7.Department of Biotechnology, Faculty of ScienceMahidol UniversityBangkokThailand
  8. 8.Research and Education Faculty, Multidisciplinary Science ClusterInterdisciplinary Science UnitNankokuJapan
  9. 9.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology (JST)KawaguchiJapan
  10. 10.Kihara Institute for Biological ResearchYokohama City UniversityYokohamaJapan

Personalised recommendations