Skip to main content
Log in

A study on calcium oxalate crystals in Tinantia anomala (Commelinaceae) with special reference to ultrastructural changes during anther development

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Calcium oxalate (CaOx) crystals in higher plants occur in five forms: raphides, styloids, prisms, druses, and crystal sand. CaOx crystals are formed in almost all tissues in intravacuolar crystal chambers. However, the mechanism of crystallization and the role of CaOx crystals have not been clearly explained. The aim of this study was to explore the occurrence and location of CaOx crystals in organs of Tinantia anomala (Torr.) C.B. Clarke (Commelinaceae) with special attention to ultrastructural changes in the quantity of tapetal raphides during microsporogenesis. We observed various parts of the plant, that is, stems, leaves, sepals, petals, anthers, staminal trichomes and stigmatic papillae and identified CaOx crystals in all parts except staminal trichomes and stigmatic papillae in Tinantia anomala. Three morphological forms: styloids, raphides and prisms were found in different amounts in different parts of the plant. Furthermore, in this species, we identified tapetal raphides in anthers. The number of tapetal raphides changed during microsporogenesis. At the beginning of meiosis, the biosynthesis of raphides proceeded intensively in the provacuoles. These organelles were formed from the endoplasmic reticulum system. In the tetrad stage, we observed vacuoles with needle-shaped raphides (type I) always localised in the centre of the organelle. When the amoeboid tapetum was degenerating, vacuoles also began to fade. We observed a small number of raphides in the stage of mature pollen grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnott HJ, Webb MA (1999) Twinned raphides of calcium oxalate in grape (Vitis): implications for crystal stability and function. Int J Plant Sci 161:133–142

    Article  Google Scholar 

  • Bednarska E, Butowt R (1994) Calcium in pollen-pistil interaction in Petunia hybrida Hort. Folia Histochem Cytochem 33:43–52

    Google Scholar 

  • Bremer K (1994) Asteraceae: Cladistics and classification. Timber Press, Portland

    Google Scholar 

  • Buvat R (1989) Ontogeny, cell differentiation, and structure of vascular plants. Springer-Verlag, Heidelberg, pp 481–482

    Book  Google Scholar 

  • Carniel K (1952) Das Verhalten der Kernc in Tapetum der Angi-spermen mit bcsonderer Berucksichtigung yo11 endomitosen und sogenannten Endomitosen. Osterr Bot Zeitschrift 99:318–362

    Article  Google Scholar 

  • Chase MW, Stevenson DW, Wilkin P, Rudall P (1995) Monocot systematics: combined analysis. In: Rudall P, Crihb P, Cutler D, Humphries C (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 685–730

    Google Scholar 

  • Coté GG (2009) Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae). Am J Bot 96:1245–1254

    Article  PubMed  Google Scholar 

  • Crowther A (2009) Reviewing raphides: issues with the identification and interpretation of calcium oxalate crystals in microfossil assemblages. In: Fairbairn A, O’Connor S, Marwick B (eds) New directions in archaeological science. Terra Australis:28. ANU E-Press, Canberra, pp 105–118

    Google Scholar 

  • D’Arcy WG, Keating RC, Buchmann SL (1996) The calcium oxalate package or so-called resorption tissue in some angiosperm anthers. In: D’Arcy WG, Keating RC (eds) The anther: form, function, and phylogeny. Cambridge University Press, Cambridge, pp 159–191

    Google Scholar 

  • Foster AS (1956) Plant idioblasts: remarkable examples of cell specialization. Protoplasma 46:184–193

    Article  Google Scholar 

  • Franceschi VR, Horner HT (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427

    Article  CAS  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  • Hamann U (1966) Embryologische, morphologisch-anatomische und systematische Untersuchungen an Philydraceen. Willdenowia Beiheft 4:1–178

    Google Scholar 

  • Hardy CR, Stevenson DW (2000) Development of the gametophytes, flower and floral vasculature in Cochliostema odoratissimum (Commelinaceae). Bot J Linn Soc 134:131–157

    Google Scholar 

  • Hardy CR, Stevenson DW, Kiss HG (2000) Development of the gametophytes, flower, and floral vasculature in Dichorisandra thyrsiflora (Commelinaceae). Am J Bot 87:1228–1239

    Article  CAS  PubMed  Google Scholar 

  • Hayat MA (2000) Principles and techniques of electron microscopy for biological applications, 4th edn. Cambridge University Press, New York

    Google Scholar 

  • He H, Veneklaas EJ, Kuo J, Lambers H (2014) Physiological and ecological significance of biomineralization in plants. Trends Plant Sci 19:166–174

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horner HT (1977) A comparative light- and electron-microscopic study of microsporogenesis in male-fertile and cytoplasmic male-sterile sunflower (Helianthus annuus). Am J Bot 64:745–759

    Article  Google Scholar 

  • Horner HT, Wagner BL (1995) Calcium oxalate formation in higher plants. In: Khan SR (ed) Calcium oxalate in biological systems. CRC Press, Boca Raton, pp 53–72

    Google Scholar 

  • Ilarslan H, Palmer RG, Horner HT (2001) Calcium oxalate crystals in developing seeds of soybean. Ann Bot 88:243–257

    Article  CAS  Google Scholar 

  • Iwano ML, Entani T, Shiba H, Takayama S, Isogai A (2004) Calcium crystals in the anther of Petunia: the existence and biological significance in the pollination process. Plant Cell Physiol 45:40–47

    Article  CAS  PubMed  Google Scholar 

  • Kauss H (1987) Some aspects of calcium dependent regulation in plant metabolism. Ann Rev PI Physiol 38:47–72

    Article  CAS  Google Scholar 

  • Khan AS, Siddiqi R (2014) Environmental factors affect calcium oxalate crystals formation Tradescantia pallida (Commelinaceae). Pak J Bot 46:477–482

    Google Scholar 

  • Kinzel H (1989) Calcium in the vacuoles and cell walls of plant tissue: forms of deposition and their physiological and ecological significance. Flora 182:99–125

    Article  Google Scholar 

  • Kohno T, Shimmen T (1987) Ca 2+-induced fragmentation of actin filaments in pollen tubes. Protoplasma 141:177–179

    Article  CAS  Google Scholar 

  • Kostman TA, Tarlyn NM, Loewus FA, Franceschi VR (2001) Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol 125:634–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari P, Singh B (1934) A preliminary note on the morphology of the aerial and underground flowers of Commelina benghalensis. Linn Curr Sci 3:158–160

    Google Scholar 

  • Mascre M (1925) Sur l’evolution de l’etamine des Commelinacees. Bulletin Soc Bot de France 72:1060–1066

    Article  Google Scholar 

  • Meric C, Dane F (2004) Calcium oxalate crystals in floral organs of Helianthus annuus L. and H. tuberosus L. (Asteraceae). Acta Biol Szeged 48:19–23

    Google Scholar 

  • Molano-Flores B (2001) Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann Bot 88:387–391

    Article  CAS  Google Scholar 

  • Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164:901–909

    Article  CAS  Google Scholar 

  • Nakata PA, McConn MM (2000) Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation. Plant Physiol 124:1097–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda K, Gupta SC (1977) Development of tapetal periplasmodium in Rheo spathacea. Mod Phytomorphol 27:308–314

    Google Scholar 

  • Pacini E (1997) Tapetum character states: analytical keys for tapetum types and activities. Can J Bot 75:1448–1459

    Article  Google Scholar 

  • Pacini E, Juniper BE (1983) The ultrastructure of the formation and development of the amoeboid tapetum in Arum italicum Miller. Protoplasma 117:116–129

    Article  Google Scholar 

  • Prychid ChJ, Rudall PJ (1999) Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Ann Bot 84:725–739

    Article  CAS  Google Scholar 

  • Prychid ChJ, Furness CA, Rudall PJ (2003) Systematic significance of cell inclusions in Haemodoraceae and allied families: silica bodies and tapetal raphides. Ann Bot 92:571–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Prywer J (2009) Theoretical analysis of specific evolution of some faces of plant COM crystals. Cryst Eng Comm 11:196–202

    Article  CAS  Google Scholar 

  • Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143:1–81

    Article  Google Scholar 

  • Raman V, Horner HT, Khan IA (2014) New and unusual forms of calcium oxalate raphide crystals in the plant kingdom. J Plant Res 127:721–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson MG (1988) Embryological development of Lachnantches caroliniana (Haemodoraceae). Am J Bot 75:1394–1408

    Article  Google Scholar 

  • Stejskal-Streit V (1940) Vergleichende Untersuchungen gehemmter Staublatter. Osterr Bot Z 89:1–56

    Article  Google Scholar 

  • Stevenson DW, Owens SJ (1978) Some aspects of the reproductive morphology of Gibasis venustula (Kunth) DR Hunt (Commelinaceae). Bot J Linn Soc 77:157–175

    Article  Google Scholar 

  • Tian GW, Shen JH (1991) Embryology of Astragalus mongholicus Bunge. Acta Bot Sinica 33:19–25

    Google Scholar 

  • Tirlapur UK, Willemse MTM (1992) Changes in calcium and calmodulin levels during microsporogenesis, pollen development and germination in Gasteria verrucosa (Mill.)H. Duval. Sex Plant Reprod 5:214–223

    Google Scholar 

  • Tomlinson PB (1966) Anatomical data in the classification of Commelinaceae. Bot J Linn Soc 59:371–395

    Article  Google Scholar 

  • Tomlinson PB (1969) Commelinales-Zingiberales. In: Metcalfe CR (ed) Anatomy of the monocotyledons III. Clarendon Press, Oxford

    Google Scholar 

  • Tütüncü KS, Öztürk N, Feruzan D (2014) Occurrence, types and distribution of calcium oxalate crystals in leaves and stems of some species of poisonous plants. Bot Stud 55:32

    Article  Google Scholar 

  • Vogel S (1978) Evolutionary shifts from reward to deception in pollen flowers. In: Richards AJ (ed) The pollination of flowers by insects. Linnaean Society Symposium Series No. 6, New York, pp 89–104

    Google Scholar 

  • Walker GWR (1957) The effects of colchicine on microsporogenesis in cultured anthers of Tradescantia paludosa. Am J Bot 44:690–696

    Article  CAS  Google Scholar 

  • Webb MA (1999) Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11:751–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willemse MTM (1993) Calcium and calmodulin distribution in the tapetum of Gasteria verrucosa during anther development. In: Hesse M, Paccini E, Willemse M (eds) The tapetum: cytology, function, biochemistry and evolution. Springer-Verlag, New York, pp 107–116

    Chapter  Google Scholar 

  • Zindler-Frank E (1976) Oxalate biosynthesis in relation to photosynthetic pathway and plant productivity-a survey. Z Pflanzenphysiol 80:1–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystyna Winiarczyk.

Additional information

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (http://www.plantcell.org): Krystyna Winiarczyk (krystyna.winiarczyk@poczta.umcs.lublin.pl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gębura, J., Winiarczyk, K. A study on calcium oxalate crystals in Tinantia anomala (Commelinaceae) with special reference to ultrastructural changes during anther development. J Plant Res 129, 685–695 (2016). https://doi.org/10.1007/s10265-016-0812-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0812-5

Keywords

Navigation