Discussion of ‘The class of CUB models: statistical foundations, inferential issues and empirical evidence’ by Domenico Piccolo and Rosaria Simone

  • Leonardo Grilli
  • Carla RampichiniEmail author


In this note we briefly discuss the structure of CUB models and their interpretation. Furthermore, we elaborate some issues related to the comparison of CUB models with mainstream approaches, focusing on generalized linear models for univariate ordinal responses and classical latent variable models for multivariate ordinal responses.


Data generating process Generalized linear models Latent variable models 



  1. Bock RD (1972) Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika 37:29–51CrossRefzbMATHGoogle Scholar
  2. Iannario M, Piccolo D (2016) A generalized framework for modelling ordinal data. Stat Methods Appl 25:163–189MathSciNetCrossRefzbMATHGoogle Scholar
  3. Lazarsfeld PF, Henry NW (1968) Latent structure analysis. Houghton-Mifflin, BostonzbMATHGoogle Scholar
  4. Manisera M, Zuccolotto P (2014) Modeling rating data with nonlinear CUB models. Comput Stat Data Anal 78:100–118MathSciNetCrossRefzbMATHGoogle Scholar
  5. Masters GN (1982) A rasch model for partial credit scoring. Psychometrika 47(2):149–174CrossRefzbMATHGoogle Scholar
  6. McLachlan G, Peel GJ (2000) Finite mixture models. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  7. Oberski DL, Vermunt JK (2015) The relationship between CUB and loglinear models with latent variables. Electron J Appl Stat Anal 8(3):374–383MathSciNetGoogle Scholar
  8. Piccolo D, Simone R (2019) The class of CUB models: Statistical foundations, inferential issues and empirical evidence. Stat Methods Appl. Google Scholar
  9. Piccolo D, Simone R, Iannario M (2018) Cumulative and CUB models for rating data: a comparative analysis. Int Stat Rev, pp 1–30.
  10. Skrondal A, Rabe-Hesketh S (2004) Generalized latent variable modeling: multilevel, longitudinal and structural equation models. Chapman & Hall, Boca RatonCrossRefzbMATHGoogle Scholar
  11. Tutz G (2012) Regression for Categorical Data. Cambridge University Press, CambridgezbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Statistics, Computer Science, Applications ‘G. Parenti’University of FlorenceFlorenceItaly

Personalised recommendations